追蹤
Christian Etmann
Christian Etmann
Senior Lead Research Scientist, Deep Render
在 deeprender.ai 的電子郵件地址已通過驗證
標題
引用次數
引用次數
年份
Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans
M Roberts, D Driggs, M Thorpe, J Gilbey, M Yeung, S Ursprung, ...
Nature Machine Intelligence 3 (3), 199-217, 2021
10292021
Conditional image generation with score-based diffusion models
G Batzolis, J Stanczuk, CB Schönlieb, C Etmann
arXiv preprint arXiv:2111.13606, 2021
1952021
On the Connection Between Adversarial Robustness and Saliency Map Interpretability
C Etmann, S Lunz, P Maass, CB Schönlieb
International Conference on Machine Learning 2019, 2019
1752019
Deep learning for tumor classification in imaging mass spectrometry
J Behrmann, C Etmann, T Boskamp, R Casadonte, J Kriegsmann, P Maaβ
Bioinformatics 34 (7), 1215-1223, 2018
1432018
Wasserstein GANs work because they fail (to approximate the Wasserstein distance)
J Stanczuk, C Etmann, LM Kreusser, CB Schönlieb
arXiv preprint arXiv:2103.01678, 2021
622021
Structure preserving deep learning
E Celledoni, MJ Ehrhardt, C Etmann, RI McLachlan, B Owren, ...
European Journal of Applied Mathematics, 2021
562021
iUNets: Fully invertible U-Nets with learnable up-and downsampling
C Etmann, R Ke, CB Schönlieb
arXiv preprint arXiv:2005.05220, 2020
48*2020
Equivariant neural networks for inverse problems
E Celledoni, MJ Ehrhardt, C Etmann, B Owren, CB Schönlieb, F Sherry
Inverse Problems 37 (8), 085006, 2021
322021
AIX-COVNET
M Roberts, D Driggs, M Thorpe, J Gilbey, M Yeung, S Ursprung, ...
Common pitfalls and recommendations for using machine learning to detect and …, 2021
212021
A closer look at double backpropagation
C Etmann
arXiv preprint arXiv:1906.06637, 2019
172019
Non-uniform diffusion models
G Batzolis, J Stanczuk, CB Schönlieb, C Etmann
arXiv preprint arXiv:2207.09786, 2022
162022
Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID‑19 using chest radiographs and CT scans. Nat Mach Intell 3 (3): 199–217
M Roberts, D Driggs, M Thorpe, J Gilbey, M Yeung, S Ursprung, ...
Ross, J., Stevenson, F., Lau, R. and Murray, E.(2016), Factors that …, 2021
152021
Invertible learned primal-dual
J Rudzusika, B Bajić, O Öktem, CB Schönlieb, C Etmann
NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, online, 2021
142021
Deep learning-based segmentation of multisite disease in ovarian cancer
T Buddenkotte, L Rundo, R Woitek, L Escudero Sanchez, L Beer, ...
European radiology experimental 7 (1), 77, 2023
122023
AIX-COVNET, JHF Rudd, E. Sala & C.-B. Schönlieb,“Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs …
M Roberts, D Driggs, M Thorpe, J Gilbey, M Yeung, S Ursprung, ...
9
INSIDEnet: Interpretable nonexpansive data‐efficient network for denoising in grating interferometry breast CT
S van Gogh, Z Wang, M Rawlik, C Etmann, S Mukherjee, CB Schönlieb, ...
Medical physics 49 (6), 3729-3748, 2022
62022
AIX-COVNET, James HF Rudd, Evis Sala, and Carola-Bibiane Schönlieb. 2021. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID …
M Roberts, D Driggs, M Thorpe, J Gilbey, M Yeung, S Ursprung, ...
Nature Machine Intelligence 3, 199-217, 2021
42021
Deep relevance regularization: Interpretable and robust tumor typing of imaging mass spectrometry data
C Etmann, M Schmidt, J Behrmann, T Boskamp, L Hauberg-Lotte, A Peter, ...
arXiv preprint arXiv:1912.05459, 2019
42019
Learning posterior distributions in underdetermined inverse problems
C Runkel, M Moeller, CB Schönlieb, C Etmann
International Conference on Scale Space and Variational Methods in Computer …, 2023
32023
Depthwise separable convolutions allow for fast and memory-efficient spectral normalization
C Runkel, C Etmann, M Möller, CB Schönlieb
arXiv preprint arXiv:2102.06496, 2021
32021
系統目前無法執行作業,請稍後再試。
文章 1–20