追蹤
Daniel Bernau
Daniel Bernau
SAP Security Research
在 sap.com 的電子郵件地址已通過驗證 - 首頁
標題
引用次數
引用次數
年份
Monte carlo and reconstruction membership inference attacks against generative models
B Hilprecht, M Härterich, D Bernau
Proceedings on Privacy Enhancing Technologies, 2019
2112019
Anonymization techniques to protect data
C Hebert, D Bernau, A Lahouel
US Patent 10,628,608, 2020
702020
Assessing differentially private deep learning with membership inference
D Bernau, PW Grassal, J Robl, F Kerschbaum
arXiv preprint arXiv:1912.11328, 2019
352019
Comparing local and central differential privacy using membership inference attacks
D Bernau, J Robl, PW Grassal, S Schneider, F Kerschbaum
IFIP Annual Conference on Data and Applications Security and Privacy, 22-42, 2021
312021
The influence of differential privacy on short term electric load forecasting
G Eibl, K Bao, PW Grassal, D Bernau, H Schmeck
Energy Informatics 1 (Suppl 1), 48, 2018
222018
Privacy-preserving outlier detection for data streams
J Böhler, D Bernau, F Kerschbaum
IFIP Annual Conference on Data and Applications Security and Privacy, 225-238, 2017
222017
Providing differentially private data with causality preservation
W Beskorovajnov, D Bernau
US Patent 10,423,781, 2019
212019
Tracking privacy budget with distributed ledger
D Bernau, F Hahn, J Boehler
US Patent 10,380,366, 2019
192019
Differential privacy and outlier detection within a non-interactive model
J Boehler, D Bernau, F Kerschbaum
US Patent 10,445,527, 2019
152019
On the privacy–utility trade-off in differentially private hierarchical text classification
D Wunderlich, D Bernau, F Aldà, J Parra-Arnau, T Strufe
Applied Sciences 12 (21), 11177, 2022
142022
Quantifying identifiability to choose and audit in differentially private deep learning
D Bernau, G Eibl, PW Grassal, H Keller, F Kerschbaum
arXiv preprint arXiv:2103.02913, 2021
142021
Interpretability framework for differentially private deep learning
D Bernau, PW Grassal, H Keller, M Haerterich
US Patent 12,001,588, 2024
112024
Assessing differentially private variational autoencoders under membership inference
D Bernau, J Robl, F Kerschbaum
IFIP Annual Conference on Data and Applications Security and Privacy, 3-14, 2022
92022
Selective access for supply chain management in the cloud
A Tueno, F Kerschbaum, D Bernau, S Foresti
2017 IEEE Conference on Communications and Network Security (CNS), 476-482, 2017
82017
Reconstruction and membership inference attacks against generative models
B Hilprecht, M Härterich, D Bernau
arXiv preprint arXiv:1906.03006, 2019
62019
Privacy preserving smart metering
D Bernau, PW Grassal, F Kerschbaum
US Patent 10,746,567, 2020
52020
Differential privacy to prevent machine learning model membership inference
D Bernau, J Robl, PW Grassal, F Kerschbaum
US Patent 11,449,639, 2022
32022
Accurately identifying members of training data in variational autoencoders by reconstruction error
B Hilprecht, D Bernau, M Haerterich
US Patent 11,501,172, 2022
22022
INTERPRETABILITY FRAMEWORK FOR DIFFERENTIALLY PRIVATE DEEP LEARNING
D Bernau, P Grassal, H Keller, M Haerterich
US Patent App. 18/904,462, 2025
2025
Interpretability framework for differentially private deep learning
D Bernau, PW Grassal, H Keller, M Haerterich
US Patent 12,147,577, 2024
2024
系統目前無法執行作業,請稍後再試。
文章 1–20