追蹤
Nassir Navab
Nassir Navab
Professor of Computer Science, Technische Universität München
在 cs.tum.edu 的電子郵件地址已通過驗證 - 首頁
標題
引用次數
引用次數
年份
V-net: Fully convolutional neural networks for volumetric medical image segmentation
F Milletari, N Navab, SA Ahmadi
2016 fourth international conference on 3D vision (3DV), 565-571, 2016
111812016
Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
BE Bejnordi, M Veta, PJ Van Diest, B Van Ginneken, N Karssemeijer, ...
Jama 318 (22), 2199-2210, 2017
32472017
Deeper depth prediction with fully convolutional residual networks
I Laina, C Rupprecht, V Belagiannis, F Tombari, N Navab
2016 Fourth international conference on 3D vision (3DV), 239-248, 2016
23402016
Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes
S Hinterstoisser, V Lepetit, S Ilic, S Holzer, G Bradski, K Konolige, ...
Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon …, 2013
16162013
Model globally, match locally: Efficient and robust 3D object recognition
B Drost, M Ulrich, N Navab, S Ilic
2010 IEEE computer society conference on computer vision and pattern …, 2010
12642010
Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again
W Kehl, F Manhardt, F Tombari, S Ilic, N Navab
Proceedings of the IEEE international conference on computer vision, 1521-1529, 2017
12112017
Concurrent spatial and channel ‘squeeze & excitation’in fully convolutional networks
AG Roy, N Navab, C Wachinger
Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st …, 2018
11122018
Cnn-slam: Real-time dense monocular slam with learned depth prediction
K Tateno, F Tombari, I Laina, N Navab
Proceedings of the IEEE conference on computer vision and pattern …, 2017
9582017
Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes
S Hinterstoisser, S Holzer, C Cagniart, S Ilic, K Konolige, N Navab, ...
2011 international conference on computer vision, 858-865, 2011
8372011
Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data
A Martinez-Möller, M Souvatzoglou, G Delso, RA Bundschuh, ...
Journal of nuclear medicine 50 (4), 520-526, 2009
8222009
Gradient response maps for real-time detection of textureless objects
S Hinterstoisser, C Cagniart, S Ilic, P Sturm, N Navab, P Fua, V Lepetit
IEEE transactions on pattern analysis and machine intelligence 34 (5), 876-888, 2011
7922011
Structure-preserving color normalization and sparse stain separation for histological images
A Vahadane, T Peng, A Sethi, S Albarqouni, L Wang, M Baust, K Steiger, ...
IEEE transactions on medical imaging 35 (8), 1962-1971, 2016
7862016
Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images
S Albarqouni, C Baur, F Achilles, V Belagiannis, S Demirci, N Navab
IEEE transactions on medical imaging 35 (5), 1313-1321, 2016
7042016
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks
AG Roy, S Conjeti, SPK Karri, D Sheet, A Katouzian, C Wachinger, ...
Biomedical optics express 8 (8), 3627-3642, 2017
6212017
Deep autoencoding models for unsupervised anomaly segmentation in brain MR images
C Baur, B Wiestler, S Albarqouni, N Navab
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2019
6062019
Dense image registration through MRFs and efficient linear programming
B Glocker, N Komodakis, G Tziritas, N Navab, N Paragios
Medical image analysis 12 (6), 731-741, 2008
5702008
Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge
K Murphy, B Van Ginneken, JM Reinhardt, S Kabus, K Ding, X Deng, ...
IEEE transactions on medical imaging 30 (11), 1901-1920, 2011
5252011
GANs for medical image analysis
S Kazeminia, C Baur, A Kuijper, B van Ginneken, N Navab, S Albarqouni, ...
Artificial intelligence in medicine 109, 101938, 2020
5152020
Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention
W Wein, S Brunke, A Khamene, MR Callstrom, N Navab
Medical image analysis 12 (5), 577-585, 2008
4842008
Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks
AG Roy, N Navab, C Wachinger
IEEE transactions on medical imaging 38 (2), 540-549, 2018
4712018
系統目前無法執行作業,請稍後再試。
文章 1–20