適用於公開取用強制性政策的文章 - Geoff Pleiss瞭解詳情
在某個資料庫公開的文章:13
On calibration of modern neural networks
C Guo, G Pleiss, Y Sun, KQ Weinberger
International Conference on Machine Learning, 1321-1330, 2017
授權規定: US National Science Foundation, Bill & Melinda Gates Foundation, US …
Gpytorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration
JR Gardner, G Pleiss, KQ Weinberger, D Bindel, AG Wilson
Advances in Neural Information Processing Systems, 7576-7586, 2018
授權規定: US National Science Foundation, Bill & Melinda Gates Foundation, US …
On fairness and calibration
G Pleiss, M Raghavan, F Wu, J Kleinberg, KQ Weinberger
Advances in Neural Information Processing Systems, 2017
授權規定: US National Science Foundation, Bill & Melinda Gates Foundation, US …
Convolutional Networks with Dense Connectivity
G Huang, Z Liu, G Pleiss, L Van Der Maaten, KQ Weinberger
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019
授權規定: US National Science Foundation, Bill & Melinda Gates Foundation, US …
Exact Gaussian processes on a million data points
KA Wang, G Pleiss, JR Gardner, S Tyree, KQ Weinberger, AG Wilson
Advances in Neural Information Processing Systems, 2019
授權規定: US National Science Foundation, Bill & Melinda Gates Foundation, US …
Constant-time predictive distributions for Gaussian processes
G Pleiss, JR Gardner, KQ Weinberger, AG Wilson
International Conference on Machine Learning, 2018
授權規定: US National Science Foundation, Bill & Melinda Gates Foundation, US …
Product kernel interpolation for scalable Gaussian processes
JR Gardner, G Pleiss, R Wu, KQ Weinberger, AG Wilson
International Conference on Artificial Intelligence and Statistics, 2018
授權規定: US National Science Foundation, Bill & Melinda Gates Foundation, US …
Deep Ensembles Work, But Are They Necessary?
T Abe, EK Buchanan, G Pleiss, R Zemel, JP Cunningham
Advances in Neural Information Processing Systems, 2022
授權規定: US National Science Foundation, US National Institutes of Health
Fast matrix square roots with applications to Gaussian processes and Bayesian optimization
G Pleiss, M Jankowiak, D Eriksson, A Damle, JR Gardner
Advances in Neural Information Processing Systems, 2020
授權規定: US National Science Foundation, Bill & Melinda Gates Foundation, US …
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
J Wenger, G Pleiss, P Hennig, JP Cunningham, JR Gardner
International Conference on Machine Learning, 2022
授權規定: German Research Foundation, European Commission, Federal Ministry of …
Harnessing Interpretable and Unsupervised Machine Learning to Address Big Data from Modern X-ray Diffraction
EA Kim, J Venderley, M Matty, K Mallayya, M Krogstad, J Ruff, G Pleiss, ...
Proceedings of the National Academy of Sciences 119 (24), e2109665119, 2022
授權規定: US National Science Foundation, US Department of Energy
Posterior and Computational Uncertainty in Gaussian Processes
J Wenger, G Pleiss, M Pförtner, P Hennig, JP Cunningham
Advances in Neural Information Processing Systems, 2022
授權規定: German Research Foundation, European Commission, Federal Ministry of …
Sharp Calibrated Gaussian Processes
A Capone, S Hirche, G Pleiss
Advances in Neural Information Processing Systems, 2023
授權規定: European Commission
出版品和資金資訊是由電腦程式自動估算而得