关注
Huziel E. Sauceda
Huziel E. Sauceda
Assistant Professor, Instituto de Física, Universidad Nacional Autonoma de Mexico
在 fisica.unam.mx 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Schnet–a deep learning architecture for molecules and materials
KT Schütt, HE Sauceda, PJ Kindermans, A Tkatchenko, KR Müller
The Journal of Chemical Physics 148 (24), 2018
19512018
Schnet: A continuous-filter convolutional neural network for modeling quantum interactions
K Schütt, PJ Kindermans, HE Sauceda Felix, S Chmiela, A Tkatchenko, ...
Advances in neural information processing systems 30, 2017
13602017
Machine learning of accurate energy-conserving molecular force fields
S Chmiela, A Tkatchenko, HE Sauceda, I Poltavsky, KT Schütt, KR Müller
Science advances 3 (5), e1603015, 2017
12952017
Machine learning force fields
OT Unke, S Chmiela, HE Sauceda, M Gastegger, I Poltavsky, KT Schütt, ...
Chemical Reviews 121 (16), 10142-10186, 2021
10482021
Towards exact molecular dynamics simulations with machine-learned force fields
S Chmiela, HE Sauceda, KR Müller, A Tkatchenko
Nature communications 9 (1), 3887, 2018
7672018
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
OT Unke, S Chmiela, M Gastegger, KT Schütt, HE Sauceda, KR Müller
Nature communications 12 (1), 7273, 2021
2572021
sGDML: Constructing accurate and data efficient molecular force fields using machine learning
S Chmiela, HE Sauceda, I Poltavsky, KR Müller, A Tkatchenko
Computer Physics Communications 240, 38-45, 2019
2392019
Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces
HE Sauceda, S Chmiela, I Poltavsky, KR Müller, A Tkatchenko
The Journal of chemical physics 150 (11), 2019
1282019
Accurate global machine learning force fields for molecules with hundreds of atoms
S Chmiela, V Vassilev-Galindo, OT Unke, A Kabylda, HE Sauceda, ...
Science Advances 9 (2), eadf0873, 2023
1082023
Vibrational properties of metal nanoparticles: Atomistic simulation and comparison with time-resolved investigation
HE Sauceda, D Mongin, P Maioli, A Crut, M Pellarin, N Del Fatti, F Vallée, ...
The Journal of Physical Chemistry C 116 (47), 25147-25156, 2012
922012
Mechanical vibrations of atomically defined metal clusters: from nano-to molecular-size oscillators
P Maioli, T Stoll, HE Sauceda, I Valencia, A Demessence, F Bertorelle, ...
Nano letters 18 (11), 6842-6849, 2018
682018
BIGDML—Towards accurate quantum machine learning force fields for materials
HE Sauceda, LE Gálvez-González, S Chmiela, LO Paz-Borbón, KR Müller, ...
Nature communications 13 (1), 3733, 2022
592022
Size and shape dependence of the vibrational spectrum and low-temperature specific heat of Au nanoparticles
HE Sauceda, F Salazar, LA Pérez, IL Garzón
The Journal of Physical Chemistry C 117 (47), 25160-25168, 2013
532013
Structural determination of metal nanoparticles from their vibrational (phonon) density of states
HE Sauceda, IL Garzón
The Journal of Physical Chemistry C 119 (20), 10876-10880, 2015
482015
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature
HE Sauceda, V Vassilev-Galindo, S Chmiela, KR Müller, A Tkatchenko
Nature Communications 12 (1), 442, 2021
472021
Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields
HE Sauceda, M Gastegger, S Chmiela, KR Müller, A Tkatchenko
The Journal of Chemical Physics 153 (12), 2020
442020
Vibrational Spectrum, Caloric Curve, Low-Temperature Heat Capacity, and Debye Temperature of Sodium Clusters: The Na139+ Case
HE Sauceda, JJ Pelayo, F Salazar, LA Pérez, IL Garzón
The Journal of Physical Chemistry C 117 (21), 11393-11398, 2013
232013
Construction of machine learned force fields with quantum chemical accuracy: Applications and chemical insights
HE Sauceda, S Chmiela, I Poltavsky, KR Müller, A Tkatchenko
Machine Learning Meets Quantum Physics, 277-307, 2020
182020
Accurate molecular dynamics enabled by efficient physically constrained machine learning approaches
S Chmiela, HE Sauceda, A Tkatchenko, KR Müller
Machine Learning Meets Quantum Physics, 129-154, 2020
132020
Vibrational properties and specific heat of core–shell Ag–Au icosahedral nanoparticles
HE Sauceda, IL Garzón
Physical Chemistry Chemical Physics 17 (42), 28054-28059, 2015
112015
系统目前无法执行此操作,请稍后再试。
文章 1–20