关注
Wei Jin
Wei Jin
Assistant Professor, Emory University
在 emory.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Graph Structure Learning for Robust Graph Neural Networks
W Jin, Y Ma, X Liu, X Tang, S Wang, J Tang
KDD 2020, 2020
6772020
Traffic flow prediction via spatial temporal graph neural network
X Wang, Y Ma, Y Wang, W Jin, X Wang, J Tang, C Jia, J Yu
Proceedings of the web conference 2020, 1082-1092, 2020
5562020
Adversarial attacks and defenses on graphs
W Jin, Y Li, H Xu, Y Wang, S Ji, C Aggarwal, J Tang
ACM SIGKDD Explorations Newsletter 22 (2), 19-34, 2021
299*2021
Node Similarity Preserving Graph Convolutional Networks
W Jin, T Derr, Y Wang, Y Ma, Z Liu, J Tang
International Conference on Web Search and Data Mining (WSDM), 2021
2462021
Exploring the potential of large language models (llms) in learning on graphs
Z Chen, H Mao, H Li, W Jin, H Wen, X Wei, S Wang, D Yin, W Fan, H Liu, ...
SIGKDD Explorations, 2023
2392023
Self-supervised learning on graphs: Deep insights and new direction
W Jin, T Derr, H Liu, Y Wang, S Wang, Z Liu, J Tang
The Web Conference (WWW 2021) Workshop: Self-Supervised Learning for the Web, 2021
2372021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
L Zhao, W Jin, L Akoglu, N Shah
International Conference on Learning Representations (ICLR), 2022
1672022
Graph Condensation for Graph Neural Networks
W Jin, L Zhao, S Zhang, Y Liu, J Tang, N Shah
International Conference on Learning Representations (ICLR), 2022
1502022
Deeprobust: A pytorch library for adversarial attacks and defenses
Y Li*, W Jin*, H Xu, J Tang
arXiv preprint arXiv:2005.06149, 2020
1452020
Elastic graph neural networks
X Liu*, W Jin*, Y Ma, Y Li, H Liu, Y Wang, M Yan, J Tang
International Conference on Machine Learning (ICML), 6837-6849, 2021
1372021
Graph trend filtering networks for recommendation
W Fan, X Liu, W Jin, X Zhao, J Tang, Q Li
Proceedings of the 45th international ACM SIGIR conference on research and …, 2022
1082022
Graph Data Augmentation for Graph Machine Learning: A Survey
T Zhao, W Jin, Y Wang, G Liu, Y Liu, S Gunnemann, N Shah, M Jiang
IEEE Data Engineering Bulletin (DEBULL), 2023
1072023
Towards Robust Graph Neural Networks for Noisy Graphs with Sparse Labels
E Dai, W Jin, H Liu, S Wang
WSDM 2022, 2022
952022
Condensing Graphs via One-Step Gradient Matching
W Jin, X Tang, H Jiang, Z Li, D Zhang, J Tang, B Yin
KDD 2022, 2022
942022
Automated self-supervised learning for graphs
W Jin, X Liu, X Zhao, Y Ma, N Shah, J Tang
International Conference on Learning Representations (ICLR), 2022
852022
Graph neural networks with adaptive residual
X Liu, J Ding, W Jin, H Xu, Y Ma, Z Liu, J Tang
NeurIPS 2021, 2021
732021
Empowering graph representation learning with test-time graph transformation
W Jin, T Zhao, J Ding, Y Liu, J Tang, N Shah
ICLR 2023, 2022
642022
Graph Neural Networks for Multimodal Single-Cell Data Integration
H Wen*, J Ding*, W Jin*, Y Wang*, Y Xie, J Tang
KDD 2022, 2022
612022
Label-free node classification on graphs with large language models (llms)
Z Chen, H Mao, H Wen, H Han, W Jin, H Zhang, H Liu, J Tang
arXiv preprint arXiv:2310.04668, 2023
492023
Demystifying structural disparity in graph neural networks: Can one size fit all?
H Mao, Z Chen, W Jin, H Han, Y Ma, T Zhao, N Shah, J Tang
Advances in neural information processing systems 36, 2024
442024
系统目前无法执行此操作,请稍后再试。
文章 1–20