Theo dõi
Miroslav Dudik
Miroslav Dudik
Microsoft Research
Email được xác minh tại microsoft.com
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Novel methods improve prediction of species’ distributions from occurrence data
J Elith*, C H. Graham*, R P. Anderson, M Dudík, S Ferrier, A Guisan, ...
Ecography 29 (2), 129-151, 2006
103442006
Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation
SJ Phillips, M Dudík
Ecography 31 (2), 161-175, 2008
86032008
A statistical explanation of MaxEnt for ecologists
J Elith, SJ Phillips, T Hastie, M Dudík, YE Chee, CJ Yates
Diversity and distributions 17 (1), 43-57, 2011
79602011
A maximum entropy approach to species distribution modeling
SJ Phillips, M Dudík, RE Schapire
Proceedings of the twenty-first international conference on Machine learning, 83, 2004
33552004
Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data
SJ Phillips, M Dudík, J Elith, CH Graham, A Lehmann, J Leathwick, ...
Ecological applications 19 (1), 181-197, 2009
32972009
Opening the black box: An open‐source release of Maxent
SJ Phillips, RP Anderson, M Dudík, RE Schapire, ME Blair
Ecography 40 (7), 887-893, 2017
26062017
Maxent software for modeling species niches and distributions v. 3.4.1
SJ Phillips, M Dudík, RE Schapire
URL: https://biodiversityinformatics.amnh.org/open_source/maxent, 2017
1405*2017
A reductions approach to fair classification
A Agarwal, A Beygelzimer, M Dudík, J Langford, H Wallach
ICML 2018, 2018
13802018
Improving fairness in machine learning systems: What do industry practitioners need?
K Holstein, J Wortman Vaughan, H Daumé III, M Dudik, H Wallach
Proceedings of the 2019 CHI conference on human factors in computing systems …, 2019
9902019
Doubly robust policy evaluation and learning
M Dudik, J Langford, L Li
ICML 2011, 2011
9432011
Fairlearn: A toolkit for assessing and improving fairness in AI
S Bird, M Dudík, R Edgar, B Horn, R Lutz, V Milan, M Sameki, H Wallach, ...
Microsoft, Tech. Rep. MSR-TR-2020-32, 2020
4882020
Doubly robust policy evaluation and optimization
M Dudík, D Erhan, J Langford, L Li
4862014
A reliable effective terascale linear learning system
A Agarwal, O Chapelle, M Dudik, J Langford
Journal of Machine Learning Research 15, 2014
4582014
Efficient Optimal Learning for Contextual Bandits
M Dudik, D Hsu, S Kale, N Karampatziakis, J Langford, L Reyzin, T Zhang
UAI 2011, 2011
3832011
Fair Regression: Quantitative Definitions and Reduction-based Algorithms
A Agarwal, M Dudík, ZS Wu
ICML 2019, 2019
3452019
Performance guarantees for regularized maximum entropy density estimation
M Dudik, SJ Phillips, RE Schapire
International Conference on Computational Learning Theory, 472-486, 2004
3192004
Correcting sample selection bias in maximum entropy density estimation
M Dudık, RE Schapire, SJ Phillips
Advances in neural information processing systems 17, 323-330, 2005
3182005
Provably efficient RL with rich observations via latent state decoding
SS Du, A Krishnamurthy, N Jiang, A Agarwal, M Dudík, J Langford
ICML 2019, 2019
2862019
Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
M Dudík, SJ Phillips, RE Schapire
Journal of Machine Learning Research 8, 1217-1260, 2007
2842007
Optimal and adaptive off-policy evaluation in contextual bandits
YX Wang, A Agarwal, M Dudík
International Conference on Machine Learning, 3589-3597, 2017
2502017
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–20