Theo dõi
Marco Miani
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Laplacian autoencoders for learning stochastic representations
M Miani, F Warburg, P Moreno-Muñoz, N Skafte, S Hauberg
Advances in Neural Information Processing Systems 35, 21059-21072, 2022
132022
Bayesian metric learning for uncertainty quantification in image retrieval
F Warburg, M Miani, S Brack, S Hauberg
Advances in Neural Information Processing Systems 36, 69178-69190, 2023
112023
Stochman
NS Detlefsen, A Pouplin, CW Feldager, C Geng, D Kalatzis, H Hauschultz, ...
GitHub. Note: https://github. com/MachineLearningLifeScience/stochman 3, 4, 2021
62021
Reparameterization invariance in approximate Bayesian inference
H Roy, M Miani, CH Ek, P Hennig, M Pförtner, L Tatzel, S Hauberg
Advances in Neural Information Processing Systems 37, 8132-8164, 2024
42024
Laplacian Segmentation Networks Improve Epistemic Uncertainty Quantification
K Zepf, S Wanna, M Miani, J Moore, J Frellsen, S Hauberg, F Warburg, ...
arXiv preprint arXiv:2303.13123, 2023
42023
Sketched Lanczos uncertainty score: a low-memory summary of the Fisher information
M Miani, L Beretta, S Hauberg
Advances in Neural Information Processing Systems 37, 23123-23154, 2024
12024
Laplacian Segmentation Networks Improve Epistemic Uncertainty Quantification
K Zepf, S Wanna, M Miani, J Moore, J Frellsen, S Hauberg, F Warburg, ...
International Conference on Medical Image Computing and Computer-Assisted …, 2024
12024
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors via Alternating Projections
M Miani, H Roy, S Hauberg
arXiv preprint arXiv:2410.16901, 2024
2024
Curious Explorer: a provable exploration strategy in Policy Learning
M Miani, M Parton, M Romito
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024
2024
Reparameterization invariance in approximate Bayesian inference
P Hennig, S Hauberg, L Tatzel, M Pförtner, CH Ek, M Miani, H Roy
arXiv, 2024
2024
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–10