Theo dõi
Moe Kayali
Moe Kayali
Email được xác minh tại cs.washington.edu - Trang chủ
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Causal relational learning
B Salimi, H Parikh, M Kayali, L Getoor, S Roy, D Suciu
Proceedings of the 2020 ACM SIGMOD international conference on management of …, 2020
532020
CHORUS: foundation models for unified data discovery and exploration
M Kayali, A Lykov, I Fountalis, N Vasiloglou, D Olteanu, D Suciu
Proceedings of the VLDB Endowment 17 (8), 2104-2114, 2024
352024
BEAVER: an enterprise benchmark for text-to-sql
PB Chen, F Wenz, Y Zhang, D Yang, J Choi, N Tatbul, M Cafarella, ...
arXiv preprint arXiv:2409.02038, 2024
52024
Quasi-stable Coloring for Graph Compression: Approximating Max-Flow, Linear Programs, and Centrality
M Kayali, D Suciu
Proceedings of the VLDB Endowment 16 (4), 803-815, 2022
42022
Mining robust default configurations for resource-constrained automl
M Kayali, C Wang
arXiv preprint arXiv:2202.09927, 2022
32022
Color: A framework for applying graph coloring to subgraph cardinality estimation
K Deeds, D Sabale, M Kayali, D Suciu
Proceedings of the VLDB Endowment 18 (2), 130-143, 2025
22025
Demonstration of inferring causality from relational databases with CaRL
M Kayali, B Salimi, D Suciu
Proceedings of the VLDB Endowment 13 (12), 2985-2988, 2020
22020
Mind the Data Gap: Bridging LLMs to Enterprise Data Integration
M Kayali, F Wenz, N Tatbul, Ç Demiralp
15th Conference on Innovative Data Systems Research, CIDR 2025, 2024
12024
QirK: Question Answering via Intermediate Representation on Knowledge Graphs
JL Scheerer, A Lykov, M Kayali, I Fountalis, D Olteanu, N Vasiloglou, ...
arXiv preprint arXiv:2408.07494, 2024
2024
Making LLMs Work for Enterprise Data Tasks
Ç Demiralp, F Wenz, PB Chen, M Kayali, N Tatbul, M Stonebraker
arXiv preprint arXiv:2407.20256, 2024
2024
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–10