Các bài viết có thể truy cập công khai - Yu ZhangTìm hiểu thêm
Không có ở bất kỳ nơi nào: 4
Multi-model streamflow prediction using conditional bias-penalized multiple linear regression
A Jozaghi, H Shen, M Ghazvinian, DJ Seo, Y Zhang, E Welles, S Reed
Stochastic Environmental Research and Risk Assessment 35 (11), 2355-2373, 2021
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Improving flood forecasting using conditional bias-penalized ensemble Kalman filter
H Lee, H Shen, SJ Noh, S Kim, DJ Seo, Y Zhang
Journal of Hydrology 575, 596-611, 2019
Các cơ quan ủy nhiệm: US National Science Foundation, US National Oceanic and Atmospheric …
Artifacts in Stage IV NWS real-time multisensor precipitation estimates and impacts on identification of maximum series
H Eldardiry, E Habib, Y Zhang, J Graschel
Journal of Hydrologic Engineering 22 (5), E4015003, 2017
Các cơ quan ủy nhiệm: US National Science Foundation
Toward parsimonious modeling of frequency of areal runoff from heavy-to-extreme precipitation in large urban areas under changing conditions: a derived moment approach
A Norouzi, H Habibi, B Nazari, SJ Noh, DJ Seo, Y Zhang
Stochastic Environmental Research and Risk Assessment 33, 1263-1281, 2019
Các cơ quan ủy nhiệm: US National Science Foundation
Có tại một số nơi: 18
A novel hybrid artificial neural network-parametric scheme for postprocessing medium-range precipitation forecasts
M Ghazvinian, Y Zhang, DJ Seo, M He, N Fernando
Advances in Water Resources 151, 103907, 2021
Các cơ quan ủy nhiệm: US National Science Foundation, US National Oceanic and Atmospheric …
Improvements to the GOES-R rainfall rate algorithm
RJ Kuligowski, Y Li, Y Hao, Y Zhang
Journal of Hydrometeorology 17 (6), 1693-1704, 2016
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Evaluation of multisensor quantitative precipitation estimation in Russian River Basin
D Willie, H Chen, V Chandrasekar, R Cifelli, C Campbell, D Reynolds, ...
Journal of Hydrologic Engineering 22 (5), E5016002, 2017
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Assessment and reduction of the physical parameterization uncertainty for Noah‐MP land surface model
Y Gan, XZ Liang, Q Duan, F Chen, J Li, Y Zhang
Water Resources Research 55 (7), 5518-5538, 2019
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration, National Natural Science …
Compound coastal, fluvial, and pluvial flooding during historical hurricane events in the Sabine–Neches Estuary, Texas
N Maymandi, MA Hummel, Y Zhang
Water Resources Research 58 (12), e2022WR033144, 2022
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Comparative evaluation of three Schaake shuffle schemes in postprocessing GEFS precipitation ensemble forecasts
L Wu, Y Zhang, T Adams, H Lee, Y Liu, J Schaake
Journal of Hydrometeorology 19 (3), 575-598, 2018
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Comparison of probabilistic quantitative precipitation forecasts from two postprocessing mechanisms
Y Zhang, L Wu, M Scheuerer, J Schaake, C Kongoli
Journal of Hydrometeorology 18 (11), 2873-2891, 2017
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Evaluation and blending of ATMS and AMSR2 snow water equivalent retrievals over the conterminous United States
Y Gan, Y Zhang, C Kongoli, C Grassotti, Y Liu, YK Lee, DJ Seo
Remote Sensing of Environment 254, 112280, 2021
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Incorporating satellite precipitation estimates into a radar-gauge multi-sensor precipitation estimation algorithm
Y He, Y Zhang, R Kuligowski, R Cifelli, D Kitzmiller
Remote Sensing 10 (1), 106, 2018
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Assimilation of blended in situ-satellite snow water equivalent into the National Water Model for improving hydrologic simulation in two US river basins
Y Gan, Y Zhang, Y Liu, C Kongoli, C Grassotti
Science of The Total Environment 838, 156567, 2022
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Improving probabilistic quantitative precipitation forecasts using short training data through artificial neural networks
M Ghazvinian, Y Zhang, TM Hamill, DJ Seo, N Fernando
Journal of Hydrometeorology 23 (9), 1365-1382, 2022
Các cơ quan ủy nhiệm: US National Science Foundation, US National Oceanic and Atmospheric …
Relative accuracy of HWRF reanalysis and a parametric wind model during the landfall of Hurricane Florence and the impacts on storm surge simulations
MA Rahman, Y Zhang, L Lu, S Moghimi, K Hu, A Abdolali
Natural Hazards 116 (1), 869-904, 2023
Các cơ quan ủy nhiệm: US National Science Foundation, US National Oceanic and Atmospheric …
A nonhomogeneous regression-based statistical postprocessing scheme for generating probabilistic quantitative precipitation forecast
M Ghazvinian, Y Zhang, DJ Seo
Journal of Hydrometeorology 21 (10), 2275-2291, 2020
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
The impacts of climatological adjustment of quantitative precipitation estimates on the accuracy of flash flood detection
Y Zhang, S Reed, JJ Gourley, B Cosgrove, D Kitzmiller, DJ Seo, R Cifelli
Journal of Hydrology 541, 387-400, 2016
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Creation of multisensor precipitation products from WSI NOWrad reflectivity data
Y Zhang, D Kitzmiller, DJ Seo, D Kim, R Cifelli
Journal of Hydrologic Engineering 22 (5), E4015001, 2017
Các cơ quan ủy nhiệm: US National Science Foundation, US National Oceanic and Atmospheric …
Recursive estimators of mean-areal and local bias in precipitation products that account for conditional bias
Y Zhang, DJ Seo
Advances in Water Resources 101, 49-59, 2017
Các cơ quan ủy nhiệm: US National Oceanic and Atmospheric Administration
Chương trình máy tính sẽ tự động xác định thông tin xuất bản và thông tin về nhà tài trợ