Theo dõi
Dan Hendrycks
Dan Hendrycks
Director of the Center for AI Safety (advisor for xAI and Scale)
Email được xác minh tại berkeley.edu - Trang chủ
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Gaussian Error Linear Units (GELUs)
D Hendrycks, K Gimpel
arXiv preprint arXiv:1606.08415, 2016
73312016
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
D Hendrycks, T Dietterich
International Conference on Learning Representations (ICLR), 2019
41952019
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
D Hendrycks, K Gimpel
International Conference on Learning Representations (ICLR), 2017
41152017
Measuring Massive Multitask Language Understanding
D Hendrycks, C Burns, S Basart, A Zou, M Mazeika, D Song, J Steinhardt
International Conference on Learning Representations (ICLR), 2020
35272020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
D Hendrycks, S Basart, N Mu, S Kadavath, F Wang, E Dorundo, R Desai, ...
International Conference on Computer Vision (ICCV), 2020
18982020
Deep Anomaly Detection with Outlier Exposure
D Hendrycks, M Mazeika, T Dietterich
International Conference on Learning Representations (ICLR), 2019
18372019
Natural Adversarial Examples
D Hendrycks, K Zhao, S Basart, J Steinhardt, D Song
Conference on Computer Vision and Pattern Recognition (CVPR), 2019
16932019
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
D Hendrycks, N Mu, ED Cubuk, B Zoph, J Gilmer, B Lakshminarayanan
International Conference on Learning Representations (ICLR), 2020
1688*2020
Measuring Mathematical Problem Solving With the MATH Dataset
D Hendrycks, C Burns, S Kadavath, A Arora, S Basart, E Tang, D Song, ...
NeurIPS, 2021
14852021
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models
A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ...
arXiv preprint arXiv:2206.04615, 2022
13992022
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
D Hendrycks, M Mazeika, S Kadavath, D Song
Neural Information Processing Systems (NeurIPS), 2019
11492019
Using Pre-training Can Improve Model Robustness and Uncertainty
D Hendrycks, K Lee, M Mazeika
International Conference on Machine Learning, 2712-2721, 2019
9112019
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
D Hendrycks, M Mazeika, D Wilson, K Gimpel
Neural Information Processing Systems (NeurIPS), 2018
6792018
Measuring Coding Challenge Competence With APPS
D Hendrycks, S Basart, S Kadavath, M Mazeika, A Arora, E Guo, C Burns, ...
NeurIPS, 2021
5922021
Scaling Out-of-Distribution Detection for Real-World Settings
D Hendrycks, S Basart, M Mazeika, M Mostajabi, J Steinhardt, D Song
International Conference on Machine Learning (ICML), 2022
580*2022
Aligning AI With Shared Human Values
D Hendrycks, C Burns, S Basart, A Critch, J Li, D Song, J Steinhardt
International Conference on Learning Representations (ICLR), 2020
5122020
Pretrained Transformers Improve Out-of-Distribution Robustness
D Hendrycks, X Liu, E Wallace, A Dziedzic, R Krishnan, D Song
Association for Computational Linguistics (ACL), 2020
4912020
DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models.
B Wang, W Chen, H Pei, C Xie, M Kang, C Zhang, C Xu, Z Xiong, R Dutta, ...
NeurIPS, 2023
4362023
Unsolved Problems in ML Safety
D Hendrycks, N Carlini, J Schulman, J Steinhardt
arXiv preprint arXiv:2109.13916, 2021
3522021
Representation engineering: A top-down approach to ai transparency
A Zou, L Phan, S Chen, J Campbell, P Guo, R Ren, A Pan, X Yin, ...
arXiv preprint arXiv:2310.01405, 2023
3362023
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–20