An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. C Strobl, J Malley, G Tutz Psychological methods 14 (4), 323, 2009 | 2990 | 2009 |
Multivariate statistical modelling based on generalized linear models G Tutz, L Fahrmeir Springerverlag, New York, 1994 | 2923 | 1994 |
Statistik: Der weg zur datenanalyse L Fahrmeir, C Heumann, R Künstler, I Pigeot, G Tutz Springer-Verlag, 2016 | 2107 | 2016 |
Multivariate statistische verfahren L Fahrmeir, A Hamerle, G Tutz Walter de Gruyter GmbH & Co KG, 2015 | 1020 | 2015 |
Regression for categorical data G Tutz Cambridge University Press, 2011 | 519 | 2011 |
Variable selection for generalized linear mixed models by L 1-penalized estimation A Groll, G Tutz Statistics and Computing 24, 137-154, 2014 | 336 | 2014 |
Sequential item response models with an ordered response G Tutz British Journal of Mathematical and Statistical Psychology 43 (1), 39-55, 1990 | 305 | 1990 |
Generalized additive modeling with implicit variable selection by likelihood-based boosting G Tutz, H Binder Biometrics 62 (4), 961-971, 2006 | 252 | 2006 |
Random forest for ordinal responses: prediction and variable selection S Janitza, G Tutz, AL Boulesteix Computational Statistics & Data Analysis 96, 57-73, 2016 | 236 | 2016 |
Die Analyse kategorialer Daten-eine anwendungsorientierte Einf uhrung in Logit-Modellierung und kategoriale Regression G Tutz Munchen: Oldenbourg, 2000 | 226* | 2000 |
Modeling discrete time-to-event data G Tutz, M Schmid Springer, 2016 | 225 | 2016 |
Random effects in ordinal regression models G Tutz, W Hennevogl Computational Statistics & Data Analysis 22 (5), 537-557, 1996 | 188 | 1996 |
Sequential models in categorical regression G Tutz Computational Statistics & Data Analysis 11 (3), 275-295, 1991 | 184 | 1991 |
Variable selection and model choice in geoadditive regression models T Kneib, T Hothorn, G Tutz Biometrics 65 (2), 626-634, 2009 | 172 | 2009 |
Improved methods for the imputation of missing data by nearest neighbor methods G Tutz, S Ramzan Computational Statistics & Data Analysis 90, 84-99, 2015 | 171 | 2015 |
Boosting ridge regression G Tutz, H Binder Computational Statistics & Data Analysis 51 (12), 6044-6059, 2007 | 151 | 2007 |
A penalty approach to differential item functioning in Rasch models G Tutz, G Schauberger Psychometrika 80 (1), 21-43, 2015 | 139 | 2015 |
Sparse modeling of categorial explanatory variables J Gertheiss, G Tutz | 136 | 2010 |
Dynamic stochastic models for time-dependent ordered paired comparison systems L Fahrmeir, G Tutz Journal of the American Statistical Association 89 (428), 1438-1449, 1994 | 126 | 1994 |
Penalized regression with correlation-based penalty G Tutz, J Ulbricht Statistics and Computing 19, 239-253, 2009 | 122 | 2009 |