Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding Z Li, Y Zhao, J Han, Y Su, R Jiao, X Wen, D Pei
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021
330 * 2021 A survey of geometric graph neural networks: Data structures, models and applications J Han, J Cen, L Wu, Z Li, X Kong, R Jiao, Z Yu, T Xu, F Wu, Z Wang, H Xu, ...
arXiv preprint arXiv:2403.00485, 2024
107 * 2024 Equivariant Graph Mechanics Networks with Constraints W Huang*, J Han*, Y Rong, T Xu, F Sun, J Huang
International Conference on Learning Representations (ICLR 2022), 2022
83 2022 Crystal structure prediction by joint equivariant diffusion R Jiao, W Huang, P Lin, J Han, P Chen, Y Lu, Y Liu
Advances in Neural Information Processing Systems 36, 17464-17497, 2023
73 * 2023 Energy-motivated equivariant pretraining for 3d molecular graphs R Jiao, J Han, W Huang, Y Rong, Y Liu
AAAI Conference on Artificial Intelligence (AAAI 2023), 2022
64 * 2022 Learning Physical Dynamics with Subequivariant Graph Neural Networks J Han, W Huang, H Ma, J Li, JB Tenenbaum, C Gan
Advances in Neural Information Processing Systems (NeurIPS 2022), 2022
45 2022 Equivariant Graph Hierarchy-Based Neural Networks J Han, W Huang, T Xu, Y Rong
Advances in Neural Information Processing Systems (NeurIPS 2022), 2022
25 2022 Smoothing matters: Momentum transformer for domain adaptive semantic segmentation R Chen, Y Rong, S Guo, J Han, F Sun, T Xu, W Huang
arXiv preprint arXiv:2203.07988, 2022
24 2022 Equivariant graph neural operator for modeling 3d dynamics M Xu, J Han, A Lou, J Kossaifi, A Ramanathan, K Azizzadenesheli, ...
arXiv preprint arXiv:2401.11037, 2024
15 2024 Relbench: A benchmark for deep learning on relational databases J Robinson, R Ranjan, W Hu, K Huang, J Han, A Dobles, M Fey, ...
Advances in Neural Information Processing Systems 37, 21330-21341, 2024
9 2024 Subequivariant Graph Reinforcement Learning in 3D Environments R Chen*, J Han*, F Sun, W Huang
International Conference on Machine Learning (ICML 2023), 2023
8 2023 Tfg: Unified training-free guidance for diffusion models H Ye, H Lin, J Han, M Xu, S Liu, Y Liang, J Ma, JY Zou, S Ermon
Advances in Neural Information Processing Systems 37, 22370-22417, 2024
7 2024 Img2cad: Reverse engineering 3d cad models from images through vlm-assisted conditional factorization Y You, MA Uy, J Han, R Thomas, H Zhang, S You, L Guibas
arXiv preprint arXiv:2408.01437, 2024
5 2024 Geometric trajectory diffusion models J Han, M Xu, A Lou, H Ye, S Ermon
arXiv preprint arXiv:2410.13027, 2024
4 2024 Structure-Aware DropEdge Toward Deep Graph Convolutional Networks J Han, W Huang, Y Rong, T Xu, F Sun, J Huang
IEEE Transactions on Neural Networks and Learning Systems, 2023
3 2023 CPSample: Classifier Protected Sampling for Guarding Training Data During Diffusion J Kazdan, H Sun, J Han, F Petersen, S Ermon
arXiv preprint arXiv:2409.07025, 2024
2 2024 -PO: Generalizing Preference Optimization with -divergence MinimizationJ Han, M Jiang, Y Song, J Leskovec, S Ermon, M Xu
arXiv preprint arXiv:2410.21662, 2024
1 2024 Improving Equivariant Graph Neural Networks on Large Geometric Graphs via Virtual Nodes Learning Y Zhang, J Cen, J Han, Z Zhang, J Zhou, W Huang
Forty-first International Conference on Machine Learning, 2024
1 2024 Energy-Free Guidance of Geometric Diffusion Models for 3D Molecule Inverse Design S Nagaraj, J Han, A Garg, M Xu
ICML'24 Workshop ML for Life and Material Science: From Theory to Industry …, 2024
2024