Takip et
Evgeny Podryabinkin
Evgeny Podryabinkin
skoltech.ru üzerinde doğrulanmış e-posta adresine sahip
Başlık
Alıntı yapanlar
Alıntı yapanlar
Yıl
Active learning of linearly parametrized interatomic potentials
EV Podryabinkin, AV Shapeev
Computational Materials Science 140, 171-180, 2017
5982017
The MLIP package: moment tensor potentials with MPI and active learning
IS Novikov, K Gubaev, EV Podryabinkin, AV Shapeev
Machine Learning: Science and Technology 2 (2), 025002, 2020
5422020
Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
EV Podryabinkin, EV Tikhonov, AV Shapeev, AR Oganov
Physical Review B 99 (6), 064114, 2019
3822019
Accelerating high-throughput searches for new alloys with active learning of interatomic potentials
K Gubaev, EV Podryabinkin, GLW Hart, AV Shapeev
Computational Materials Science 156, 148-156, 2019
3292019
First‐principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine‐learning interatomic potentials
B Mortazavi, M Silani, EV Podryabinkin, T Rabczuk, X Zhuang, ...
Advanced Materials 33 (35), 2102807, 2021
2672021
Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials
B Mortazavi, IS Novikov, EV Podryabinkin, S Roche, T Rabczuk, ...
Applied Materials Today 20, 100685, 2020
1942020
Machine learning of molecular properties: Locality and active learning
K Gubaev, EV Podryabinkin, AV Shapeev
The Journal of chemical physics 148 (24), 2018
1872018
Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures
B Mortazavi, EV Podryabinkin, S Roche, T Rabczuk, X Zhuang, ...
Materials Horizons 7 (9), 2359-2367, 2020
1802020
Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution
B Mortazavi, EV Podryabinkin, IS Novikov, T Rabczuk, X Zhuang, ...
Computer Physics Communications 258, 107583, 2021
1682021
Young’s Modulus and Tensile Strength of Ti3C2 MXene Nanosheets As Revealed by In Situ TEM Probing, AFM Nanomechanical Mapping, and Theoretical …
KL Firestein, JE von Treifeldt, DG Kvashnin, JFS Fernando, C Zhang, ...
Nano letters 20 (8), 5900-5908, 2020
1592020
Moment tensor potentials as a promising tool to study diffusion processes
II Novoselov, AV Yanilkin, AV Shapeev, EV Podryabinkin
Computational Materials Science 164, 46-56, 2019
1062019
Efficient machine-learning based interatomic potentialsfor exploring thermal conductivity in two-dimensional materials
B Mortazavi, EV Podryabinkin, IS Novikov, S Roche, T Rabczuk, ...
Journal of Physics: Materials 3 (2), 02LT02, 2020
852020
High thermal conductivity in semiconducting Janus and non-Janus diamanes
M Raeisi, B Mortazavi, EV Podryabinkin, F Shojaei, X Zhuang, ...
Carbon 167, 51-61, 2020
592020
Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning
Q Wang, J Ding, L Zhang, E Podryabinkin, A Shapeev, E Ma
npj Computational Materials 6 (1), 194, 2020
442020
Elinvar effect in β-Ti simulated by on-the-fly trained moment tensor potential
AV Shapeev, EV Podryabinkin, K Gubaev, F Tasnádi, IA Abrikosov
New Journal of Physics 22 (11), 113005, 2020
352020
MLIP-3: Active learning on atomic environments with moment tensor potentials
E Podryabinkin, K Garifullin, A Shapeev, I Novikov
The Journal of Chemical Physics 159 (8), 2023
332023
Moment and forces exerted on the inner cylinder in eccentric annular flow
EV Podryabinkin, VY Rudyak
Journal of Engineering Thermophysics 20 (3), 320-328, 2011
322011
Modeling of steady Herschel–Bulkley fluid flow over a sphere
AA Gavrilov, KA Finnikov, EV Podryabinkin
Journal of Engineering Thermophysics 26, 197-215, 2017
312017
Detailed modeling of drilling fluid flow in a wellbore annulus while drilling
E Podryabinkin, V Rudyak, A Gavrilov, R May
International Conference on Offshore Mechanics and Arctic Engineering 55409 …, 2013
242013
Active learning and uncertainty estimation
A Shapeev, K Gubaev, E Tsymbalov, E Podryabinkin
Machine Learning Meets Quantum Physics, 309-329, 2020
232020
Sistem, işlemi şu anda gerçekleştiremiyor. Daha sonra yeniden deneyin.
Makaleler 1–20