Följ
Hengshuai Yao
Hengshuai Yao
Sony AI
Verifierad e-postadress på ualberta.ca - Startsida
Titel
Citeras av
Citeras av
År
Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions
S Atakishiyev, M Salameh, H Yao, R Goebel
IEEE Access, 2024
1962024
Distributional Reinforcement Learning for Efficient Exploration
B Mavrin, S Zhang, H Yao, K Kong, Linglong, Wu, Y Yu
International conference on machine learning, 2019, 2019
1082019
Negative log likelihood ratio loss for deep neural network classification
H Yao, D Zhu, B Jiang, P Yu
Proceedings of the Future Technologies Conference (FTC) 2019: Volume 1, 276-282, 2020
1072020
Discounted reinforcement learning is not an optimization problem
A Naik, R Shariff, N Yasui, H Yao, RS Sutton
Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, 2019
722019
Mapless navigation among dynamics with social-safety-awareness: a reinforcement learning approach from 2d laser scans
J Jin, NM Nguyen, N Sakib, D Graves, H Yao, M Jagersand
2020 IEEE international conference on robotics and automation (ICRA), 6979-6985, 2020
692020
Provably convergent two-timescale off-policy actor-critic with function approximation
S Zhang, B Liu, H Yao, S Whiteson
International Conference on Machine Learning, 11204-11213, 2020
622020
Weakly supervised few-shot object segmentation using co-attention with visual and semantic embeddings
M Siam, N Doraiswamy, BN Oreshkin, H Yao, M Jagersand
Twenty-Ninth International Joint Conference on Artificial Intelligence …, 2020
582020
Breaking the deadly triad with a target network
S Zhang, H Yao, S Whiteson
International Conference on Machine Learning, 12621-12631, 2021
512021
A multi-component framework for the analysis and design of explainable artificial intelligence
MY Kim, S Atakishiyev, HKB Babiker, N Farruque, R Goebel, OR Zaïane, ...
Machine Learning and Knowledge Extraction 3 (4), 900-921, 2021
502021
Method of prediction of a state of an object in the environment using an action model of a neural network
H Yao, SM Nosrati, H Chen, P Yadmellat, Y Zhang
US Patent 10,997,491, 2021
492021
Universal Option Models
H Yao, C Szepesvari, R Sutton, S Bhatnagar, J Modayil
Advances in Neural Information Processing Systems, 2014, 2014
45*2014
Quota: The quantile option architecture for reinforcement learning
S Zhang, H Yao
Proceedings of the AAAI conference on artificial intelligence 33 (01), 5797-5804, 2019
372019
Multi-step dyna planning for policy evaluation and control
H Yao, S Bhatnagar, D Diao
Advances in neural information processing systems 22, 2009
37*2009
Ace: An actor ensemble algorithm for continuous control with tree search
S Zhang, H Yao
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 5789-5796, 2019
322019
Pseudo-MDPs and Factored Linear Action Models
H Yao, C Szepesvari, BA Pires, X Zhang
IEEE ADPRL, 2014
302014
Method of selection of an action for an object using a neural network
H Yao, H Chen, SM Nosrati, P Yadmellat, Y Zhang
US Patent 10,935,982, 2021
252021
Towards safe, explainable, and regulated autonomous driving
S Atakishiyev, M Salameh, H Yao, R Goebel
Explainable Artificial Intelligence for Intelligent Transportation Systems …, 2021
222021
Approximate policy iteration with linear action models
H Yao, C Szepesvári
Proceedings of the AAAI Conference on Artificial Intelligence 26 (1), 1212-1218, 2012
212012
Understanding and mitigating the limitations of prioritized experience replay
Y Pan, J Mei, A Farahmand, M White, H Yao, M Rohani, J Luo
Uncertainty in Artificial Intelligence, 1561-1571, 2022
192022
Hill climbing on value estimates for search-control in Dyna
Y Pan, H Yao, A Farahmand, M White
Twenty-Eighth International Joint Conference on Artificial Intelligence …, 2019
192019
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20