Följ
Quentin Bouniot
Quentin Bouniot
Postdoc at TUM and Helmholtz Munich
Verifierad e-postadress på tum.de - Startsida
Titel
Citeras av
Citeras av
År
Vulnerability of person re-identification models to metric adversarial attacks
Q Bouniot, R Audigier, A Loesch
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
332020
Improving few-shot learning through multi-task representation learning theory
Q Bouniot, I Redko, R Audigier, A Loesch, A Habrard
European conference on computer vision, 435-452, 2022
102022
Optimal transport as a defense against adversarial attacks
Q Bouniot, R Audigier, A Loesch
2020 25th International Conference on Pattern Recognition (ICPR), 5044-5051, 2021
92021
Towards few-annotation learning for object detection: Are transformer-based models more efficient?
Q Bouniot, A Loesch, R Audigier, A Habrard
Proceedings of the IEEE/CVF winter conference on applications of computer …, 2023
62023
Towards better understanding meta-learning methods through multi-task representation learning theory
Q Bouniot, I Redko, R Audigier, A Loesch, Y Zotkin, A Habrard
arXiv preprint arXiv:2010.01992, 2020
52020
Tailoring Mixup to Data for Calibration
Q Bouniot, P Mozharovskyi, F d'Alché-Buc
arXiv preprint arXiv:2311.01434, 2023
32023
Proposal-contrastive pretraining for object detection from fewer data
Q Bouniot, R Audigier, A Loesch, A Habrard
arXiv preprint arXiv:2310.16835, 2023
32023
From alexnet to transformers: Measuring the non-linearity of deep neural networks with affine optimal transport
Q Bouniot, I Redko, A Mallasto, C Laclau, K Arndt, O Struckmeier, ...
arXiv preprint arXiv:2310.11439, 2023
32023
The robust semantic segmentation uncv2023 challenge results
X Yu, Y Zuo, Z Wang, X Zhang, J Zhao, Y Yang, L Jiao, R Peng, X Wang, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
32023
Towards Few-Annotation Learning in Computer Vision: Application to Image Classification and Object Detection tasks
Q Bouniot
arXiv preprint arXiv:2311.04888, 2023
12023
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
J Parekh, Q Bouniot, P Mozharovskyi, A Newson, F d'Alché-Buc
arXiv preprint arXiv:2407.01331, 2024
2024
Understanding deep neural networks through the lens of their non-linearity
Q Bouniot, I Redko, A Mallasto, C Laclau, O Struckmeier, K Arndt, ...
2023
Understanding Few-Shot Multi-Task Representation Learning Theory
Q Bouniot, I Redko
ICLR Blog Track, 2022
2022
Vers une meilleure compréhension des méthodes de méta-apprentissage à travers la théorie de l’apprentissage de représentations multi-tâches
Q Bouniot, I Redko, R Audigier, A Loesch
2021
Putting theory to work: from learning bounds to meta-learning algorithms
Q Bouniot, I Redko, R Audigier, A Loesch, A Habrard
Workshop Meta-Learn@ NeurIPS 2020, 2020
2020
Tailoring Mixup to Data for Calibration
Q Bouniot, P Mozharovskyi, F d'Alché-Buc
The Thirteenth International Conference on Learning Representations, 0
Conceptualize Any Network: A Concept Extraction Framework for Holistic Interpretability of Image Classifiers
H Moghaddam, Q Bouniot, J Parekh, P Mozharovskyi, F d'Alché-Buc
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–17