Competing effects of attraction vs. repulsion in chemotaxis Y Tao, ZA Wang Mathematical Models and Methods in Applied Sciences 23 (01), 1-36, 2013 | 303 | 2013 |
Global stability of prey-taxis systems HY Jin, ZA Wang Journal of Differential Equations 262 (3), 1257-1290, 2017 | 198 | 2017 |
Pattern formation of the attraction-repulsion Keller-Segel system P Liu, J Shi, ZA Wang Discrete Contin. Dyn. Syst. Ser. B 18 (10), 2597-2625, 2013 | 162 | 2013 |
MATHEMATICS OF TRAVELING WAVES IN CHEMOTAXIS. ZA Wang Discrete & Continuous Dynamical Systems-Series B 18 (3), 2013 | 161 | 2013 |
Boundedness, blowup and critical mass phenomenon in competing chemotaxis HY Jin, ZA Wang Journal of Differential Equations 260 (1), 162-196, 2016 | 158 | 2016 |
Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis T Li, ZA Wang SIAM Journal on Applied Mathematics 70 (5), 1522-1541, 2010 | 148 | 2010 |
On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms H Li, R Peng, Z Wang SIAM Journal on Applied Mathematics 78 (4), 2129-2153, 2018 | 146 | 2018 |
Boundedness, stabilization, and pattern formation driven by density-suppressed motility HY Jin, YJ Kim, ZA Wang SIAM Journal on Applied Mathematics 78 (3), 1632-1657, 2018 | 138 | 2018 |
Classical solutions and pattern formation for a volume filling chemotaxis model Z Wang, T Hillen Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (3), 2007 | 138 | 2007 |
Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis T Li, ZA Wang Journal of Differential Equations 250 (3), 1310-1333, 2011 | 125 | 2011 |
Asymptotic dynamics of the one‐dimensional attraction–repulsion Keller–Segel model HY Jin, ZA Wang Mathematical Methods in the Applied Sciences 38 (3), 444-457, 2015 | 118 | 2015 |
Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis ZA Wang, Z Xiang, P Yu Journal of Differential Equations 260 (3), 2225-2258, 2016 | 117 | 2016 |
Classical solutions and steady states of an attraction–repulsion chemotaxis in one dimension J Liu, ZA Wang Journal of biological dynamics 6 (sup1), 31-41, 2012 | 115 | 2012 |
Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity HY Jin, J Li, ZA Wang Journal of Differential Equations 255 (2), 193-219, 2013 | 108 | 2013 |
Global stabilization of the full attraction-repulsion Keller-Segel system HY Jin, ZA Wang arXiv preprint arXiv:1905.05990, 2019 | 105 | 2019 |
Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic–parabolic system arising in chemotaxis T Li, ZA Wang Mathematical models and methods in applied sciences 20 (11), 1967-1998, 2010 | 98 | 2010 |
Global dynamics and spatio-temporal patterns of predator–prey systems with density-dependent motion HY Jin, ZA Wang European Journal of Applied Mathematics 32 (4), 652-682, 2021 | 97 | 2021 |
LARGE-TIME BEHAVIOR OF A PARABOLIC-PARABOLIC CHEMOTAXIS MODEL WITH LOGARITHMIC SENSITIVITY IN ONE DIMENSION. Y Tao, L Wang, ZA Wang Discrete & Continuous Dynamical Systems-Series B 18 (3), 2013 | 94 | 2013 |
Stability of traveling waves of the Keller–Segel system with logarithmic sensitivity J Li, T Li, ZA Wang Mathematical Models and Methods in Applied Sciences 24 (14), 2819-2849, 2014 | 93 | 2014 |
Shock formation in a chemotaxis model Z Wang, T Hillen Mathematical Methods in the Applied Sciences 31 (1), 45-70, 2008 | 89 | 2008 |