Spremljaj
Pablo Montero-Manso
Pablo Montero-Manso
Preverjeni e-poštni naslov na sydney.edu.au
Naslov
Navedeno
Navedeno
Leto
TSclust: An R package for time series clustering
P Montero, JA Vilar
Journal of Statistical Software 62, 1-43, 2015
6312015
FFORMA: Feature-based forecast model averaging
P Montero-Manso, G Athanasopoulos, RJ Hyndman, TS Talagala
International Journal of Forecasting 36 (1), 86-92, 2020
3342020
Monash time series forecasting archive
R Godahewa, C Bergmeir, GI Webb, RJ Hyndman, P Montero-Manso
Thirty-fifth Conference on Neural Information Processing Systems Datasets …, 2021
1932021
Principles and algorithms for forecasting groups of time series: Locality and globality
P Montero-Manso, RJ Hyndman
International Journal of Forecasting 37 (4), 1632-1653, 2021
1902021
tsfeatures: Time series feature extraction
R Hyndman, Y Kang, P Montero-Manso, T Talagala, E Wang, Y Yang, ...
R package version 1 (0), 2019
872019
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
K Sherratt, H Gruson, R Grah, H Johnson, R Niehus, B Prasse, ...
Elife 12, e81916, 2023
692023
tsfeatures: Time series feature extraction. R package version 1.0. 2
R Hyndman, Y Kang, P Montero-Manso, T Talagala, E Wang, Y Yang, ...
412020
M4comp2018: Data from the M4-Competition
P Montero-Manso, C Netto, T Talagala
R package version 0.1. 0, 2018
182018
tsfeatures: time series feature extraction, 2020
RJ Hyndman, Y Kang, P Montero-Manso, T Talagala, E Wang, Y Yang, ...
R package version 1 (2.9000), 2020
172020
An accurate and fully-automated ensemble model for weekly time series forecasting
R Godahewa, C Bergmeir, GI Webb, P Montero-Manso
International Journal of Forecasting 39 (2), 641-658, 2023
112023
A strong baseline for weekly time series forecasting
R Godahewa, C Bergmeir, GI Webb, P Montero-Manso
arXiv preprint arXiv:2010.08158, 2020
92020
TSclust: Time series clustering utilities
P Montero, JA Vilar
R package version 1 (1), 2014
92014
Comparison and Evaluation of Methods for a Predict+ Optimize Problem in Renewable Energy
C Bergmeir, F de Nijs, A Sriramulu, M Abolghasemi, R Bean, J Betts, ...
arXiv preprint arXiv:2212.10723, 2022
82022
A first perturbome of Pseudomonas aeruginosa: Identification of core genes related to multiple perturbations by a machine learning approach
JAM Mora, P Montero-Manso, R García-Batán, R Campos-Sánchez, ...
Biosystems 205, 104411, 2021
82021
A Look at the Evaluation Setup of the M5 Forecasting Competition
H Hewamalage, P Montero-Manso, C Bergmeir, RJ Hyndman
arXiv preprint arXiv:2108.03588, 2021
72021
Two‐sample homogeneity testing: A procedure based on comparing distributions of interpoint distances
P Montero‐Manso, JA Vilar
Statistical Analysis and Data Mining: The ASA Data Science Journal 12 (3 …, 2019
62019
M., A Package for Stationary Time Series Clustering
P Manso
Master thesis, Universidade da Coruna, 2013
62013
Distributed classification based on distances between probability distributions in feature space
P Montero-Manso, L Morán-Fernández, V Bolón-Canedo, JA Vilar, ...
Information Sciences 496, 431-450, 2019
52019
Situational assessment of COVID-19 in Australia Technical Report 15 March 2021 (released 28 May 2021)
N Golding, FM Shearer, R Moss, P Dawson, D Liu, JV Ross, R Hyndman, ...
5*
How to Leverage Data for Time Series Forecasting with Artificial Intelligence Models: Illustrations and Guidelines for Cross-Learning
P Montero-Manso
Forecasting with Artificial Intelligence: Theory and Applications, 123-162, 2023
42023
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–20