Članki z zahtevami za javni dostop - Gurutzeta Guillera-ArroitaVeč o tem
Ni na voljo nikjer: 4
Adaptive management for improving species conservation across the captive-wild spectrum
S Canessa, G Guillera-Arroita, JJ Lahoz-Monfort, DM Southwell, ...
Biological Conservation 199, 123-131, 2016
Zahteve: Australian Research Council
Two-stage Bayesian study design for species occupancy estimation
G Guillera-Arroita, MS Ridout, BJT Morgan
Journal of Agricultural, Biological, and Environmental Statistics 19, 278-291, 2014
Zahteve: Australian Research Council, UK Engineering and Physical Sciences Research …
Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?
G Guillera-Arroita, JJ Lahoz-Monfort
AStA Advances in Statistical Analysis 101, 381-398, 2017
Zahteve: Australian Research Council
The score test for the two‐sample occupancy model
N Karavarsamis, G Guillera‐Arroita, RM Huggins, BJT Morgan
Australian & New Zealand Journal of Statistics, 2020
Zahteve: Australian Research Council
Na voljo nekje: 47
Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
DR Roberts, V Bahn, S Ciuti, MS Boyce, J Elith, G Guillera‐Arroita, ...
Ecography 40 (8), 913-929, 2017
Zahteve: Australian Research Council, Natural Sciences and Engineering Research …
Is my species distribution model fit for purpose? Matching data and models to applications
G Guillera‐Arroita, JJ Lahoz‐Monfort, J Elith, A Gordon, H Kujala, ...
Global ecology and biogeography 24 (3), 276-292, 2015
Zahteve: Australian Research Council
A standard protocol for reporting species distribution models
D Zurell, J Franklin, C König, PJ Bouchet, CF Dormann, J Elith, G Fandos, ...
Ecography 43 (9), 1261-1277, 2020
Zahteve: US National Science Foundation, US Department of Defense, Australian …
blockCV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models
R Valavi, J Elith, JJ Lahoz-Monfort, G Guillera-Arroita
Methods in Ecology and Evolution, DOI: 10.1111/2041-210X.13107, 2018
Zahteve: Australian Research Council
A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD
T Hao, J Elith, G Guillera‐Arroita, JJ Lahoz‐Monfort
Diversity and Distributions 25 (5), 839-852, 2019
Zahteve: Australian Research Council
Predictive performance of presence‐only species distribution models: a benchmark study with reproducible code
R Valavi, G Guillera‐Arroita, JJ Lahoz‐Monfort, J Elith
Ecological monographs 92 (1), e01486, 2022
Zahteve: Australian Research Council
Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities
G Guillera‐Arroita
Ecography 40 (2), 281-295, 2017
Zahteve: Australian Research Council
Data integration for large-scale models of species distributions
NJB Isaac, MA Jarzyna, P Keil, LI Dambly, PH Boersch-Supan, ...
Trends in ecology & evolution 35 (1), 56-67, 2020
Zahteve: Australian Research Council, UK Natural Environment Research Council
Model averaging in ecology: A review of Bayesian, information‐theoretic, and tactical approaches for predictive inference
CF Dormann, JM Calabrese, G Guillera‐Arroita, E Matechou, V Bahn, ...
Ecological monographs 88 (4), 485-504, 2018
Zahteve: Australian Research Council, German Research Foundation, European Commission …
Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models
T Hao, J Elith, JJ Lahoz‐Monfort, G Guillera‐Arroita
Ecography 43 (4), 549-558, 2020
Zahteve: Australian Research Council
Imperfect detection impacts the performance of species distribution models
JJ Lahoz‐Monfort, G Guillera‐Arroita, BA Wintle
Global ecology and biogeography 23 (4), 504-515, 2014
Zahteve: Australian Research Council
When do we need more data? A primer on calculating the value of information for applied ecologists
S Canessa, G Guillera‐Arroita, JJ Lahoz‐Monfort, DM Southwell, ...
Methods in Ecology and Evolution 6 (10), 1219-1228, 2015
Zahteve: Australian Research Council
Ignoring imperfect detection in biological surveys is dangerous: A response to ‘fitting and interpreting occupancy models'
G Guillera-Arroita, JJ Lahoz-Monfort, DI MacKenzie, BA Wintle, ...
PloS one 9 (7), e99571, 2014
Zahteve: Australian Research Council
Forecasting species range dynamics with process‐explicit models: matching methods to applications
NJ Briscoe, J Elith, R Salguero‐Gómez, JJ Lahoz‐Monfort, JS Camac, ...
Ecology Letters 22 (11), 1940-1956, 2019
Zahteve: Australian Research Council, UK Natural Environment Research Council
Statistical approaches to account for false‐positive errors in environmental DNA samples
JJ Lahoz‐Monfort, G Guillera‐Arroita, R Tingley
Molecular Ecology Resources 16 (3), 673-685, 2016
Zahteve: Australian Research Council
Maxent is not a presence–absence method: a comment on Thibaud et al.
G Guillera‐Arroita, JJ Lahoz‐Monfort, J Elith
Methods in Ecology and Evolution 5 (11), 1192-1197, 2014
Zahteve: Australian Research Council
Podatke o objavi in financiranju samodejno določi računalniški program