Active deep decoding of linear codes I Be’Ery, N Raviv, T Raviv, Y Be’Ery IEEE Transactions on Communications 68 (2), 728-736, 2019 | 52 | 2019 |
Active selection and training of deep neural networks for decoding error correction codes Y Beery, I Beery, N Raviv, T Raviv US Patent App. 16/892,343, 2021 | 51 | 2021 |
Online meta-learning for hybrid model-based deep receivers T Raviv, S Park, O Simeone, YC Eldar, N Shlezinger IEEE Transactions on Wireless Communications 22 (10), 6415-6431, 2023 | 36 | 2023 |
Meta-ViterbiNet: Online meta-learned Viterbi equalization for non-stationary channels T Raviv, S Park, N Shlezinger, O Simeone, YC Eldar, J Kang 2021 IEEE International Conference on Communications Workshops (ICC …, 2021 | 22 | 2021 |
Data augmentation for deep receivers T Raviv, N Shlezinger IEEE Transactions on Wireless Communications 22 (11), 8259-8274, 2023 | 21 | 2023 |
Data-driven ensembles for deep and hard-decision hybrid decoding T Raviv, N Raviv, Y Be’ery 2020 IEEE International Symposium on Information Theory (ISIT), 321-326, 2020 | 19 | 2020 |
Deep neural network ensembles for decoding error correction codes Y Beery, T Raviv US Patent App. 17/337,519, 2021 | 17 | 2021 |
Permutation selection for decoding of error correction codes Y Beery, N Raviv, T Raviv, J Goldberger, A Caciularu US Patent App. 17/571,659, 2022 | 14 | 2022 |
perm2vec: Graph permutation selection for decoding of error correction codes using self-attention N Raviv, A Caciularu, T Raviv, J Goldberger, Y Be'ery arXiv preprint arXiv:2002.02315, 2020 | 13 | 2020 |
Adaptive and flexible model-based AI for deep receivers in dynamic channels T Raviv, S Park, O Simeone, YC Eldar, N Shlezinger IEEE Wireless Communications, 2024 | 12 | 2024 |
Modular model-based bayesian learning for uncertainty-aware and reliable deep MIMO receivers T Raviv, S Park, O Simeone, N Shlezinger 2023 IEEE International Conference on Communications Workshops (ICC …, 2023 | 12 | 2023 |
Deep ensemble of weighted viterbi decoders for tail-biting convolutional codes T Raviv, A Schwartz, Y Be’ery Entropy 23 (1), 93, 2021 | 9 | 2021 |
perm2vec: Attentive Graph Permutation Selection for Decoding of Error Correction Codes A Caciularu, N Raviv, T Raviv, J Goldberger, Y Be’ery IEEE Journal on Selected Areas in Communications 39 (1), 79-88, 2020 | 8 | 2020 |
Crc-aided learned ensembles of belief-propagation polar decoders T Raviv, A Goldman, O Vayner, Y Be’ery, N Shlezinger ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and …, 2024 | 6 | 2024 |
Symbol-level online channel tracking for deep receivers Y Cohen, T Raviv, N Shlezinger ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022 | 5 | 2022 |
Blind channel estimation and joint symbol detection with data-driven factor graphs L Schmid, T Raviv, N Shlezinger, L Schmalen IEEE Transactions on Communications, 2025 | 4 | 2025 |
Adaptive data augmentation for deep receivers T Raviv, N Shlezinger 2022 IEEE 23rd International Workshop on Signal Processing Advances in …, 2022 | 4 | 2022 |
Multi-frequency upper mid-band Localization T Raviv, S Kang, M Mezzavilla, S Rangan, N Shlezinger 2024 IEEE 25th International Workshop on Signal Processing Advances in …, 2024 | 2 | 2024 |
Concept drift detection for deep learning aided receivers in dynamic channels N Uzlaner, T Raviv, N Shlezinger, K Todros 2024 IEEE 25th International Workshop on Signal Processing Advances in …, 2024 | 2 | 2024 |
Uncertainty-aware and reliable neural MIMO receivers via modular Bayesian deep learning T Raviv, S Park, O Simeone, N Shlezinger arXiv preprint arXiv:2302.02436, 2023 | 2 | 2023 |