Spremljaj
Omar Chehab
Omar Chehab
ENSAE/CREST
Preverjeni e-poštni naslov na ensae.fr - Domača stran
Naslov
Navedeno
Navedeno
Leto
Uncovering the structure of clinical EEG signals with self-supervised learning
H Banville, O Chehab, A Hyvärinen, DA Engemann, A Gramfort
Journal of Neural Engineering 18 (4), 046020, 2021
2402021
A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin–Huxley models
M Carlu, O Chehab, L Dalla Porta, D Depannemaecker, C Héricé, ...
Journal of neurophysiology 123 (3), 1042-1051, 2020
512020
The optimal noise in noise-contrastive learning is not what you think
O Chehab, A Gramfort, A Hyvärinen
Uncertainty in Artificial Intelligence (UAI), 307-316, 2022
192022
Deep Recurrent Encoder: an end-to-end network to model magnetoencephalography at scale
O Chehab, A Défossez, L Jean-Christophe, A Gramfort, JR King
Neurons, Behavior, Data Analysis, and Theory, 2022
15*2022
Provable benefits of annealing for estimating normalizing constants: Importance Sampling, Noise-Contrastive Estimation, and beyond
O Chehab, A Hyvarinen, A Risteski
Spotlight, Advances in Neural Information Processing Systems (NeurIPS) 36, 2024
92024
Learning with self-supervision on EEG data
A Gramfort, H Banville, O Chehab, A Hyvärinen, D Engemann
International Winter Conference on Brain-Computer Interface (BCI), 1-2, 2021
72021
Provable Convergence and Limitations of Geometric Tempering for Langevin Dynamics
O Chehab, A Korba, A Stromme, A Vacher
International Conference on Learning Representations (ICLR), 2024
32024
Optimizing the noise in self-supervised learning: from importance sampling to noise-contrastive estimation
O Chehab, A Gramfort, A Hyvarinen
arXiv preprint arXiv:2301.09696, 2023
32023
Polynomial time sampling from log-smooth distributions in fixed dimension under semi-log-concavity of the forward diffusion with application to strongly dissipative distributions
A Vacher, O Chehab, A Korba
arXiv preprint arXiv:2501.00565, 2024
12024
A Practical Diffusion Path for Sampling
O Chehab, A Korba
International Conference on Machine Learning (ICML), Workshop on Structured …, 2024
12024
Identifiable Multi-View Causal Discovery Without Non-Gaussianity
A Heurtebise, O Chehab, P Ablin, A Gramfort, A Hyvärinen
arXiv preprint arXiv:2502.20115, 2025
2025
Density Ratio Estimation with Conditional Probability Paths
H Yu, A Klami, A Hyvärinen, A Korba, O Chehab
arXiv preprint arXiv:2502.02300, 2025
2025
MVICAD2: Multi-View Independent Component Analysis with Delays and Dilations
A Heurtebise, O Chehab, P Ablin, A Gramfort
arXiv preprint arXiv:2501.07426, 2025
2025
Advances in Self-Supervised Learning: applications to neuroscience and sample-efficiency
O Chehab
Inria, Université Paris-Saclay, 2023
2023
The Optimal Noise in Noise-Contrastive Learning Is Not What You Think (Supplementary Material)
O Chehab, A Gramfort, A Hyvärinen
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–15