Spremljaj
Shu Liu
Shu Liu
Department of Mathematics, UCLA
Preverjeni e-poštni naslov na g.ucla.edu - Domača stran
Naslov
Navedeno
Navedeno
Leto
Scalable computation of monge maps with general costs
J Fan, S Liu, S Ma, Y Chen, H Zhou
arXiv preprint arXiv:2106.03812, 4, 2021
352021
Neural Parametric Fokker--Planck Equation
S Liu, W Li, H Zha, H Zhou
SIAM Journal on Numerical Analysis 60 (3), 1385-1449, 2022
262022
Neural monge map estimation and its applications
J Fan, S Liu, S Ma, H Zhou, Y Chen
arXiv preprint arXiv:2106.03812, 2021
262021
Learning stochastic behaviour from aggregate data
S Ma, S Liu, H Zha, H Zhou
International Conference on Machine Learning, 7258-7267, 2021
162021
Wasserstein Hamiltonian flow with common noise on graph
J Cui, S Liu, H Zhou
SIAM Journal on Applied Mathematics 83 (2), 484-509, 2023
102023
Optimal control for stochastic nonlinear Schrödinger equation on graph
J Cui, S Liu, H Zhou
SIAM Journal on Control and Optimization 61 (4), 2021-2042, 2023
92023
What is a stochastic Hamiltonian process on finite graph? An optimal transport answer
J Cui, S Liu, H Zhou
Journal of Differential Equations 305, 428-457, 2021
92021
Learning high dimensional wasserstein geodesics
S Liu, S Ma, Y Chen, H Zha, H Zhou
arXiv preprint arXiv:2102.02992, 2021
92021
Parametric fokker-planck equation
W Li, S Liu, H Zha, H Zhou
Geometric Science of Information: 4th International Conference, GSI 2019 …, 2019
92019
Stochastic wasserstein hamiltonian flows
J Cui, S Liu, H Zhou
Journal of Dynamics and Differential Equations, 1-37, 2023
82023
Parameterized wasserstein hamiltonian flow
H Wu, S Liu, X Ye, H Zhou
SIAM Journal on Numerical Analysis 63 (1), 360-395, 2025
62025
Parameterized wasserstein gradient flow
Y Jin, S Liu, H Wu, X Ye, H Zhou
Journal of Computational Physics 524, 113660, 2025
22025
A first-order computational algorithm for reaction-diffusion type equations via primal-dual hybrid gradient method
S Liu, S Liu, S Osher, W Li
Journal of Computational Physics 500, 112753, 2024
22024
Numerical Analysis on Neural Network Projected Schemes for Approximating One Dimensional Wasserstein Gradient Flows
X Zuo, J Zhao, S Liu, S Osher, W Li
arXiv preprint arXiv:2402.16821, 2024
22024
A supervised learning scheme for computing hamilton-jacobi equation via density coupling
J Cui, S Liu, H Zhou
arXiv preprint arXiv:2401.15954, 2024
22024
Approximating the optimal transport plan via particle-evolving method
S Liu, H Sun, H Zha
arXiv preprint arXiv:2105.06088, 2021
22021
Numerical analysis of a first-order computational algorithm for reaction-diffusion equations via the primal-dual hybrid gradient method
S Liu, X Zuo, S Osher, W Li
arXiv preprint arXiv:2401.14602, 2024
12024
A Particle-Evolving Method for Approximating the Optimal Transport Plan
S Liu, H Sun, H Zha
Geometric Science of Information: 5th International Conference, GSI 2021 …, 2021
12021
A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations
S Liu, S Osher, W Li
arXiv preprint arXiv:2411.06278, 2024
2024
Numerical computation and analysis related to optimal transport theory
S Liu
Georgia Institute of Technology, 2022
2022
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–20