Compositionally-warped Gaussian processes G Rios, F Tobar Neural Networks 118, 235-246, 2019 | 57 | 2019 |
Bayesian learning with Wasserstein barycenters J Backhoff-Veraguas, J Fontbona, G Rios, F Tobar ESAIM: Probability and Statistics 26, 436-472, 2022 | 34 | 2022 |
A Practical Query Language for Graph DBs. R Angles, P Barceló, G Rios AMW, 2013 | 22 | 2013 |
Learning non-Gaussian time series using the Box-Cox Gaussian process G Rios, F Tobar 2018 International Joint Conference on Neural Networks (IJCNN), 1-8, 2018 | 21 | 2018 |
Stochastic Gradient Descent for Barycenters in Wasserstein Space J Backhoff-Veraguas, J Fontbona, G Rios, F Tobar arXiv preprint arXiv:2201.04232, 2022 | 14 | 2022 |
Series de tiempo R Gonzalo Santiago: Univer, 2008 | 9 | 2008 |
Recovering latent signals from a mixture of measurements using a Gaussian process prior F Tobar, G Rios, T Valdivia, P Guerrero IEEE Signal Processing Letters 24 (2), 231-235, 2016 | 6 | 2016 |
Transport gaussian processes for regression G Rios arXiv preprint arXiv:2001.11473, 2020 | 5 | 2020 |
Diseño e implementación de un lenguaje de consulta para bases de datos de grafos GA Ríos Díaz Universidad de Chile, 2013 | 1 | 2013 |
Stochastic gradient descent for barycenters in Wasserstein space J Backhoff, J Fontbona, G Rios, F Tobar Journal of Applied Probability 62 (1), 15-43, 2025 | | 2025 |
Wasserstein Barycenters for Bayesian Learning: Technical Report G Rios | | 2020 |
Contributions to bayesian machine learning via transport maps GA Ríos Díaz Universidad de Chile, 2020 | | 2020 |