Spremljaj
Gonzalo Rios
Gonzalo Rios
Niuro - VP of Engineering
Preverjeni e-poštni naslov na niuro.io - Domača stran
Naslov
Navedeno
Navedeno
Leto
Compositionally-warped Gaussian processes
G Rios, F Tobar
Neural Networks 118, 235-246, 2019
572019
Bayesian learning with Wasserstein barycenters
J Backhoff-Veraguas, J Fontbona, G Rios, F Tobar
ESAIM: Probability and Statistics 26, 436-472, 2022
342022
A Practical Query Language for Graph DBs.
R Angles, P Barceló, G Rios
AMW, 2013
222013
Learning non-Gaussian time series using the Box-Cox Gaussian process
G Rios, F Tobar
2018 International Joint Conference on Neural Networks (IJCNN), 1-8, 2018
212018
Stochastic Gradient Descent for Barycenters in Wasserstein Space
J Backhoff-Veraguas, J Fontbona, G Rios, F Tobar
arXiv preprint arXiv:2201.04232, 2022
142022
Series de tiempo
R Gonzalo
Santiago: Univer, 2008
92008
Recovering latent signals from a mixture of measurements using a Gaussian process prior
F Tobar, G Rios, T Valdivia, P Guerrero
IEEE Signal Processing Letters 24 (2), 231-235, 2016
62016
Transport gaussian processes for regression
G Rios
arXiv preprint arXiv:2001.11473, 2020
52020
Diseño e implementación de un lenguaje de consulta para bases de datos de grafos
GA Ríos Díaz
Universidad de Chile, 2013
12013
Stochastic gradient descent for barycenters in Wasserstein space
J Backhoff, J Fontbona, G Rios, F Tobar
Journal of Applied Probability 62 (1), 15-43, 2025
2025
Wasserstein Barycenters for Bayesian Learning: Technical Report
G Rios
2020
Contributions to bayesian machine learning via transport maps
GA Ríos Díaz
Universidad de Chile, 2020
2020
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–12