Članki z zahtevami za javni dostop - Galin JonesVeč o tem
Ni na voljo nikjer: 4
Markov chain Monte Carlo in practice
GL Jones, Q Qin
Annual Review of Statistics and Its Application 9 (1), 557-578, 2022
Zahteve: US National Science Foundation
Analyzing Markov chain Monte Carlo output
D Vats, N Robertson, JM Flegal, GL Jones
Wiley Interdisciplinary Reviews: Computational Statistics 12 (4), e1501, 2020
Zahteve: US National Science Foundation
A Bayesian latent spatial model for mapping the cortical signature of progression to Alzheimer's disease
N Dai, H Kang, GL Jones, MB Fiecas, ...
Canadian Journal of Statistics 49 (1), 46-62, 2021
Zahteve: US Department of Defense, US National Institutes of Health, Canadian …
Supplementary Material for ‘Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity Under Mixing and Composition’
AA Johnson, GL Jones, RC Neath
Zahteve: US National Institutes of Health
Na voljo nekje: 22
Inference from simulations and monitoring convergence
A Gelman, K Shirley, S Brooks, GL Jones, XL Meng
Journal of Computational Physics 172, 827-840, 2011
Zahteve: US National Institutes of Health
Multivariate output analysis for Markov chain Monte Carlo
D Vats, JM Flegal, GL Jones
Biometrika 106 (2), 321-337, 2019
Zahteve: US National Science Foundation, US National Institutes of Health
Component-wise Markov chain Monte Carlo: Uniform and geometric ergodicity under mixing and composition
AA Johnson, GL Jones, RC Neath
Zahteve: US National Institutes of Health
Spatial Bayesian Variable Selection Models on Functional Magnetic Resonance Imaging Time-Series Data
KJ Lee, GL Jones, BS Caffo, SS Bassett
Zahteve: US National Institutes of Health
Strong consistency of multivariate spectral variance estimators in Markov chain Monte Carlo
D Vats, JM Flegal, GL Jones
Zahteve: US National Science Foundation, US National Institutes of Health
Markov chain Monte Carlo estimation of quantiles
CR Doss, JM Flegal, GL Jones, RC Neath
Zahteve: US National Institutes of Health
Convergence of conditional Metropolis-Hastings samplers
GL Jones, GO Roberts, JS Rosenthal
Advances in Applied Probability 46 (2), 422-445, 2014
Zahteve: US National Institutes of Health
Bayesian spatiotemporal modeling using hierarchical spatial priors, with applications to functional magnetic resonance imaging (with discussion)
M Bezener, J Hughes, G Jones
Zahteve: US National Science Foundation
Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models
AA Johnson, GL Jones
Journal of Multivariate Analysis 140, 325-342, 2015
Zahteve: US National Institutes of Health
Convergence analysis of a collapsed Gibbs sampler for Bayesian vector autoregressions
KO Ekvall, GL Jones
Zahteve: Austrian Science Fund
Assessing and visualizing simultaneous simulation error
N Robertson, JM Flegal, D Vats, GL Jones
Journal of Computational and Graphical Statistics 30 (2), 324-334, 2020
Zahteve: US National Science Foundation
Hierarchical Bayesian method for constraining the neutron star equation of state with an ensemble of binary neutron star postmerger remnants
AW Criswell, J Miller, N Woldemariam, T Soultanis, A Bauswein, ...
Physical Review D 107 (4), 043021, 2023
Zahteve: US National Science Foundation, German Research Foundation, European Commission
Convergence rates of two-component MCMC samplers
Q Qin, GL Jones
Bernoulli 28 (2), 859-885, 2022
Zahteve: US National Science Foundation
Bayesian spatiotemporal modeling for detecting neuronal activation via functional magnetic resonance imaging
M Bezener, LE Eberly, J Hughes, G Jones, DR Musgrove
Handbook of Big Data Analytics, 485-501, 2018
Zahteve: US National Science Foundation, US National Institutes of Health
Markov chain Monte Carlo with linchpin variables
F Acosta, ML Huber, GL Jones
preprint, 2014
Zahteve: US National Institutes of Health
Exact convergence analysis for Metropolis–Hastings independence samplers in Wasserstein distances
A Brown, GL Jones
Journal of Applied Probability 61 (1), 33-54, 2024
Zahteve: US National Science Foundation
Podatke o objavi in financiranju samodejno določi računalniški program