Подписаться
Edward Lockhart
Edward Lockhart
DeepMind
Подтвержден адрес электронной почты в домене deepmind.com
Название
Процитировано
Процитировано
Год
Mastering atari, go, chess and shogi by planning with a learned model
J Schrittwieser, I Antonoglou, T Hubert, K Simonyan, L Sifre, S Schmitt, ...
Nature 588 (7839), 604-609, 2020
26112020
Scaling language models: Methods, analysis & insights from training gopher
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
arXiv preprint arXiv:2112.11446, 2021
10602021
Efficient neural audio synthesis
N Kalchbrenner, E Elsen, K Simonyan, S Noury, N Casagrande, ...
International Conference on Machine Learning, 2410-2419, 2018
10342018
Parallel wavenet: Fast high-fidelity speech synthesis
A Oord, Y Li, I Babuschkin, K Simonyan, O Vinyals, K Kavukcuoglu, ...
International conference on machine learning, 3918-3926, 2018
10312018
Deep reinforcement learning with relational inductive biases
V Zambaldi, D Raposo, A Santoro, V Bapst, Y Li, I Babuschkin, K Tuyls, ...
524*2018
OpenSpiel: A framework for reinforcement learning in games
M Lanctot, E Lockhart, JB Lespiau, V Zambaldi, S Upadhyay, J Pérolat, ...
arXiv preprint arXiv:1908.09453, 2019
3062019
Mastering the game of Stratego with model-free multiagent reinforcement learning
J Perolat, B De Vylder, D Hennes, E Tarassov, F Strub, V de Boer, ...
Science 378 (6623), 990-996, 2022
2162022
Computing approximate equilibria in sequential adversarial games by exploitability descent
E Lockhart, M Lanctot, J Pérolat, JB Lespiau, D Morrill, F Timbers, K Tuyls
arXiv preprint arXiv:1903.05614, 2019
812019
Consistent jumpy predictions for videos and scenes
A Kumar, SMA Eslami, D Rezende, M Garnelo, F Viola, E Lockhart, ...
50*2018
Approximate exploitability: Learning a best response in large games
F Timbers, N Bard, E Lockhart, M Lanctot, M Schmid, N Burch, ...
arXiv preprint arXiv:2004.09677, 2020
492020
Scaling Language Models: Methods
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
Analysis & Insights from Training Gopher. arXiv, 2021
292021
Solving common-payoff games with approximate policy iteration
S Sokota, E Lockhart, F Timbers, E Davoodi, R D'Orazio, N Burch, ...
Proceedings of the AAAI Conference on Artificial Intelligence 35 (11), 9695-9703, 2021
182021
Fast computation of Nash equilibria in imperfect information games
R Munos, J Perolat, JB Lespiau, M Rowland, B De Vylder, M Lanctot, ...
International Conference on Machine Learning, 7119-7129, 2020
112020
Human-agent cooperation in bridge bidding
E Lockhart, N Burch, N Bard, S Borgeaud, T Eccles, L Smaira, R Smith
arXiv preprint arXiv:2011.14124, 2020
72020
35TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, ICML 2018
LM Nguyen, K Scheinberg, M Takáč, PH Nguyen, M Van Dijk, P Richtárik, ...
2018
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–15