Подписаться
Martin Meinke
Martin Meinke
Подтвержден адрес электронной почты в домене de.bosch.com
Название
Процитировано
Процитировано
Год
Lane-level map-matching based on optimization
J Rabe, M Meinke, M Necker, C Stiller
2016 IEEE 19th International Conference on Intelligent Transportation …, 2016
252016
Demonstrating Self-Learning Algorithm Adaptivity in a Hardware-Oblivious Database Engine.
M Heimel, F Haase, M Meinke, S Breß, M Saecker, V Markl
EDBT, 616-619, 2014
52014
SLPC: A VRNN-based approach for stochastic lidar prediction and completion in autonomous driving
G Eskandar, A Braun, M Meinke, K Armanious, B Yang
2021 29th European Signal Processing Conference (EUSIPCO), 721-725, 2021
22021
Floxels: Fast Unsupervised Voxel Based Scene Flow Estimation
DT Hoffmann, SH Raza, H Jiang, D Tananaev, S Klingenhoefer, ...
arXiv preprint arXiv:2503.04718, 2025
2025
Method and system for determining the ground surface using LiDAR data
M Meinke
DE Patent DE102023201110A1, 2024
2024
Method and device for the recognition of blooming in a lidar measurement
M Meinke, S Buck
US Patent US20230122788A1, 2023
2023
Method and apparatus for detecting surroundings, and vehicle with such an apparatus
M Schaefer, M Gressmann, E Helmuth, P Lehner, M Meinke
US Patent US-11443529-B2, 2022
2022
Method for generating digital image pairs as training data for neural networks
M Meinke
US Patent US-11321815-B2, 2022
2022
Determination of depth maps from radar data and/or lidar data
M Meinke, GBF Eskandar, A Braun
DE Patent DE102021201168A1, 2022
2022
Method for the determination of 3D point correspondences in lidar measurements
M Schaefer, Manuel, Meinke
DE Patent DE102020001345A1, 2021
2021
В данный момент система не может выполнить эту операцию. Повторите попытку позднее.
Статьи 1–10