Discrete-time temporal network embedding via implicit hierarchical learning in hyperbolic space M Yang, M Zhou, M Kalander, Z Huang, I King (KDD) Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery …, 2021 | 132 | 2021 |
gcastle: A python toolbox for causal discovery K Zhang, S Zhu, M Kalander, I Ng, J Ye, Z Chen, L Pan arXiv preprint arXiv:2111.15155, 2021 | 75 | 2021 |
Out-of-distribution detection with implicit outlier transformation Q Wang, J Ye, F Liu, Q Dai, M Kalander, T Liu, J Hao, B Han (ICLR) International Conference on Learning Representations, 2023 | 51 | 2023 |
An influence-based approach for root cause alarm discovery in telecom networks K Zhang*, M Kalander*, M Zhou, X Zhang, J Ye (ICSOC) International Conference on Service-Oriented Computing, 124-136, 2020 | 27* | 2020 |
Spatio-temporal hybrid graph convolutional network for traffic forecasting in telecommunication networks M Kalander, M Zhou, C Zhang, H Yi, L Pan arXiv preprint arXiv:2009.09849, 2020 | 23 | 2020 |
Proactive microwave link anomaly detection in cellular data networks L Pan, J Zhang, PPC Lee, M Kalander, J Ye, P Wang Computer Networks 167, 106969, 2020 | 21 | 2020 |
RiskLoc: localization of multi-dimensional root causes by weighted risk M Kalander arXiv preprint arXiv:2205.10004, 2022 | 5 | 2022 |
An ensemble noise-robust K-fold cross-validation selection method for noisy labels Y Wen*, M Kalander*, C Su, L Pan (IJCAI WS) IJCAI Weakly Supervised Representation Learning Workshop, 2021 | 5 | 2021 |
Method and apparatus for locating root cause alarm, and computer-readable storage medium K Zhang, HE Caifeng, K Marcus, Y Liu, P Ivy, Y Li US Patent App. 17/035,054, 2021 | 5 | 2021 |
Exploit cam by itself: Complementary learning system for weakly supervised semantic segmentation J Mai, F Zhang, J Ye, M Kalander, X Zhang, WK Yang, T Liu, B Han arXiv preprint arXiv:2303.02449, 2023 | 3 | 2023 |
Wind Power Forecasting with Deep Learning: Team didadida_hualahuala M Kalander, Z Rao, C Zhang KDD Cup 2022, 2022 | 2 | 2022 |
Contrastive Representation based Active Learning for Time Series L Pan, M Kalander, Y Zhang, P Wang (DASC) IEEE Intl Conf on Dependable, Autonomic and Secure Computing, 1-6, 2022 | 1 | 2022 |
Exploiting counter-examples for active learning with partial labels F Zhang, Y Ye, L Feng, Z Rao, J Zhu, M Kalander, C Gong, J Hao, B Han Machine Learning 113 (6), 3849-3868, 2024 | | 2024 |
Safe Table Tennis Swing Stroke with Low-Cost Hardware F Cursi, M Kalander, S Wu, X Xue, Y Tian, G Tian, X Quan, J Hao (ICRA) IEEE International Conference on Robotics and Automation, 18279-18285, 2024 | | 2024 |
LDAAD: An effective label de-noising approach for anomaly detection L Pan, M Kalander, P Wang Journal of Intelligent & Fuzzy Systems 42 (6), 5627-5637, 2022 | | 2022 |
A natural language processing approach for identifying driving styles in curves E McNabb, M Kalander | | 2016 |
Chalmers oanvända datorkraft-Distribuering av arbete och energihantering med HTCondor D Bergqvist, M Kalander, O Andersson, P Johansson Berg, R Högfeldt | | 2014 |