Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells H Zhu, RJ Kee, VM Janardhanan, O Deutschmann, DG Goodwin Journal of the electrochemical society 152 (12), A2427, 2005 | 690 | 2005 |
CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes VM Janardhanan, O Deutschmann Journal of Power Sources 162 (2), 1192-1202, 2006 | 430 | 2006 |
A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency A Raj, M Sander, V Janardhanan, M Kraft Combustion and Flame 157 (3), 523-534, 2010 | 175 | 2010 |
Performance analysis of a SOFC under direct internal reforming conditions VM Janardhanan, V Heuveline, O Deutschmann Journal of Power Sources 172 (1), 296-307, 2007 | 166 | 2007 |
Three-phase boundary length in solid-oxide fuel cells: A mathematical model VM Janardhanan, V Heuveline, O Deutschmann Journal of Power Sources 178 (1), 368-372, 2008 | 153 | 2008 |
DETCHEM software package O Deutschmann, S Tischer, C Correa, D Chatterjee, S Kleditzsch, ... Karlsruhe, 2004 | 149* | 2004 |
Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane VM Janardhanan, O Deutschmann Chemical Engineering Science 62 (18-20), 5473-5486, 2007 | 133 | 2007 |
A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis V Menon, Q Fu, VM Janardhanan, O Deutschmann Journal of Power Sources 274, 768-781, 2015 | 128 | 2015 |
Modeling of solid-oxide fuel cells VM Janardhanan, O Deutschmann Zeitschrift für Physikalische Chemie 221 (4), 443-478, 2007 | 110 | 2007 |
Deactivation and regeneration of Ni catalyst during steam reforming of model biogas: An experimental investigation S Appari, VM Janardhanan, R Bauri, S Jayanti International journal of hydrogen energy 39 (1), 297-304, 2014 | 109 | 2014 |
Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073–1373 K with a plug‐flow reactor model K Norinaga, VM Janardhanan, O Deutschmann International Journal of Chemical Kinetics 40 (4), 199-208, 2008 | 108 | 2008 |
A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning S Appari, VM Janardhanan, R Bauri, S Jayanti, O Deutschmann Applied Catalysis A: General 471, 118-125, 2014 | 105 | 2014 |
A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production V Menon, VM Janardhanan, O Deutschmann Chemical Engineering Science 110, 83-93, 2014 | 83 | 2014 |
Pyrolysis of propane under vacuum carburizing conditions: An experimental and modeling study RU Khan, S Bajohr, D Buchholz, R Reimert, HD Minh, K Norinaga, ... Journal of Analytical and Applied Pyrolysis 81 (2), 148-156, 2008 | 71 | 2008 |
Study of short-term catalyst deactivation due to carbon deposition during biogas dry reforming on supported Ni catalyst V Pawar, D Ray, C Subrahmanyam, VM Janardhanan Energy & Fuels 29 (12), 8047-8052, 2015 | 66 | 2015 |
Micro-kinetic modeling of NH3 decomposition on Ni and its application to solid oxide fuel cells S Appari, VM Janardhanan, S Jayanti, L Maier, S Tischer, ... Chemical engineering science 66 (21), 5184-5191, 2011 | 62 | 2011 |
Study of the combined deactivation due to sulfur poisoning and carbon deposition during biogas dry reforming on supported Ni catalyst V Pawar, S Appari, DS Monder, VM Janardhanan Industrial & Engineering Chemistry Research 56 (30), 8448-8455, 2017 | 59 | 2017 |
A novel approach to model the transient behavior of solid-oxide fuel cell stacks V Menon, VM Janardhanan, S Tischer, O Deutschmann Journal of Power Sources 214, 227-238, 2012 | 53 | 2012 |
Modeling diffusion limitation in solid-oxide fuel cells VM Janardhanan, O Deutschmann Electrochimica Acta 56 (27), 9775-9782, 2011 | 53 | 2011 |
Modeling CO2 electrolysis in solid oxide electrolysis cell G Narasimhaiah, VM Janardhanan Journal of Solid State Electrochemistry 17, 2361-2370, 2013 | 45 | 2013 |