Unsupervised representation learning with deep convolutional generative adversarial networks A Radford, L Metz, S Chintala arXiv preprint arXiv:1511.06434, 2015 | 19506 | 2015 |
Gpt-4 technical report J Achiam, S Adler, S Agarwal, L Ahmad, I Akkaya, FL Aleman, D Almeida, ... arXiv preprint arXiv:2303.08774, 2023 | 9235 | 2023 |
Unrolled generative adversarial networks L Metz, B Poole, D Pfau, J Sohl-Dickstein arXiv preprint arXiv:1611.02163, 2016 | 4080 | 2016 |
Began: Boundary equilibrium generative adversarial networks D Berthelot, T Schumm, L Metz arXiv preprint arXiv:1703.10717, 2017 | 1552 | 2017 |
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ... arXiv preprint arXiv:2206.04615, 2022 | 1392 | 2022 |
Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015 A Radford, L Metz, S Chintala arXiv preprint arXiv:1511.06434 5, 2015 | 684 | 2015 |
Adversarial spheres J Gilmer, L Metz, F Faghri, SS Schoenholz, M Raghu, M Wattenberg, ... arXiv preprint arXiv:1801.02774, 2018 | 429 | 2018 |
Gpt-4o system card A Hurst, A Lerer, AP Goucher, A Perelman, A Ramesh, A Clark, AJ Ostrow, ... arXiv preprint arXiv:2410.21276, 2024 | 288 | 2024 |
ChatGPT: Optimizing language models for dialogue J Schulman, B Zoph, C Kim, J Hilton, J Menick, J Weng, JFC Uribe, ... OpenAI blog 2 (4), 2022 | 194 | 2022 |
Understanding and correcting pathologies in the training of learned optimizers L Metz, N Maheswaranathan, J Nixon, D Freeman, J Sohl-Dickstein International Conference on Machine Learning, 4556-4565, 2019 | 169 | 2019 |
Unsupervised representation learning with deep convolutional generative adversarial networks (2016) A Radford, L Metz, S Chintala arXiv preprint arXiv:1511.06434, 2015 | 152 | 2015 |
Meta-learning update rules for unsupervised representation learning L Metz, N Maheswaranathan, B Cheung, J Sohl-Dickstein arXiv preprint arXiv:1804.00222, 2018 | 148 | 2018 |
Discrete sequential prediction of continuous actions for deep rl L Metz, J Ibarz, N Jaitly, J Davidson arXiv preprint arXiv:1705.05035, 2017 | 148 | 2017 |
Guided evolutionary strategies: Augmenting random search with surrogate gradients N Maheswaranathan, L Metz, G Tucker, D Choi, J Sohl-Dickstein International Conference on Machine Learning, 4264-4273, 2019 | 106 | 2019 |
Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv e-prints A Radford, L Metz, S Chintala arXiv preprint arXiv:1511.06434 1511, 2015 | 106 | 2015 |
Openai o1 system card A Jaech, A Kalai, A Lerer, A Richardson, A El-Kishky, A Low, A Helyar, ... arXiv preprint arXiv:2412.16720, 2024 | 104 | 2024 |
On linear identifiability of learned representations G Roeder, L Metz, D Kingma International Conference on Machine Learning, 9030-9039, 2021 | 96 | 2021 |
Gradients are not all you need L Metz, CD Freeman, SS Schoenholz, T Kachman arXiv preprint arXiv:2111.05803, 2021 | 95 | 2021 |
Discovered policy optimisation C Lu, J Kuba, A Letcher, L Metz, C Schroeder de Witt, J Foerster Advances in Neural Information Processing Systems 35, 16455-16468, 2022 | 88 | 2022 |
General-purpose in-context learning by meta-learning transformers L Kirsch, J Harrison, J Sohl-Dickstein, L Metz arXiv preprint arXiv:2212.04458, 2022 | 77 | 2022 |