Seguir
Naomi Simumba
Naomi Simumba
Research Scientist, IBM Research
Email confirmado em ibm.com
Título
Citado por
Citado por
Ano
Foundation models for generalist geospatial artificial intelligence
J Jakubik, S Roy, CE Phillips, P Fraccaro, D Godwin, B Zadrozny, ...
arXiv preprint arXiv:2310.18660, 2023
982023
Multiple objective metaheuristics for feature selection based on stakeholder requirements in credit scoring
N Simumba, S Okami, A Kodaka, N Kohtake
Decision Support Systems 155, 113714, 2022
292022
Alternative scoring factors using non-financial data for credit decisions in agricultural microfinance
N Simumba, S Okami, A Kodaka, N Kohtake
2018 IEEE International Systems Engineering Symposium (ISSE), 1-8, 2018
172018
Foundation models for generalist geospatial artificial intelligence (2023)
J Jakubik, S Roy, CE Phillips, P Fraccaro, D Godwin, B Zadrozny, ...
URL https://arxiv. org/abs/2310.18660 2 (3), 5, 2023
82023
Foundation Models for Generalist Geospatial Artificial Intelligence, arXiv
J Jakubik, S Roy, CE Phillips, P Fraccaro, D Godwin, B Zadrozny, ...
arXiv preprint arXiv:2310.18660, 2023
82023
Spatiotemporal integration of mobile, satellite, and public geospatial data for enhanced credit scoring
N Simumba, S Okami, A Kodaka, N Kohtake
Symmetry 13 (4), 575, 2021
82021
Comparison of profit-based multi-objective approaches for feature selection in credit scoring
N Simumba, S Okami, A Kodaka, N Kohtake
Algorithms 14 (9), 260, 2021
72021
Credit decision tool using mobile application data for microfinance in agriculture
N Simumba, S Okami, N Kohtake
2017 IEEE International Conference on Big Data (Big Data), 4714-4721, 2017
52017
Area sampling for training geospatial foundation models
D Kimura, N Simumba, M Freitag, J Schmude, M Tatsubori
AGU Fall Meeting Abstracts 2023, IN54B-07, 2023
32023
Tensorbank: Tensor lakehouse for foundation model training
R Kienzler, J Schmude, N Simumba, B Blumenstiel, M Freitag, D Kimura, ...
2023 IEEE International Conference on Big Data (BigData), 3350-3354, 2023
22023
Fine-tuning of Geospatial Foundation Models for Aboveground Biomass Estimation
M Muszynski, L Klein, AF Da Silva, AP Atluri, C Gomes, D Szwarcman, ...
arXiv preprint arXiv:2406.19888, 2024
12024
SAR2NDVI: Pre-Training for SAR-to-NDVI Image Translation
D Kimura, T Ishikawa, M Mitsugi, Y Kitakoshi, T Tanaka, N Simumba, ...
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and …, 2024
12024
Adapting transfer learning for multiple channels in satellite data applications
N Simumba, M Tatsubori
EGU General Assembly Conference Abstracts, EGU-1502, 2023
12023
Towards accelerated discovery services for geospatio-temporal foundation models
M Tatsubori, T Moriyama, N Simumba, T Ishikawa, D Szwarcman, ...
AGU Fall Meeting Abstracts 2022, IN32D-0405, 2022
12022
Spatially and semantically diverse points extraction using hierarchical clustering
N Simumba, S Masuda, M Tatsubori
Proceedings of the 5th ACM SIGSPATIAL International Workshop on Location …, 2021
12021
TensorLakeHouse: A High-Performance, Open-Source Platform for Accelerated Geospatial Data Management with Hierarchical Statistical Indices
R Kienzler, LP Tizzei, B Blumenstiel, M Freitag, I Khabibrakhmanov, ...
American Geophysical Union Fall Meeting, 2024
2024
Comparison of Geospatial foundation model based mapped burn scars with predicted forest fire susceptible locations using environmental factors
P Shukla, SA Klampt, N Simumba, D Kimura, D Shukla
American Geophysical Union Fall Meeting, 2024
2024
Predicting NDVI from SAR images toward Above Ground Biomass Estimation
D Kimura, T Ishikawa, N Simumba, M Tatsubori, T Moriyama, ...
American Geophysical Union Fall Meeting, 2024
2024
Towards Multi Modal Geospatial Foundation Models With Multiple Resolutions
N Simumba, J Jakubik, B Blumenstiel, P Fraccaro
American Geophysical Union Fall Meeting, 2024
2024
Global Area Sampling for Geospatial Foundation Model
D Kimura, N Simumba, M Freitag, J Schmude, D Szwarcman, M Tatsubori, ...
American Geophysical Union Fall Meeting, 2024
2024
O sistema não pode efectuar a operação agora. Tente mais tarde.
Artigos 1–20