Seguir
Songze Li
Título
Citado por
Citado por
Ano
A fundamental tradeoff between computation and communication in distributed computing
S Li, MA Maddah-Ali, Q Yu, AS Avestimehr
IEEE Transactions on Information Theory 64 (1), 109-128, 2017
5242017
Fedml: A research library and benchmark for federated machine learning
C He, S Li, J So, X Zeng, M Zhang, H Wang, X Wang, P Vepakomma, ...
arXiv preprint arXiv:2007.13518, 2020
4732020
Lagrange coded computing: Optimal design for resiliency, security, and privacy
Q Yu, S Li, N Raviv, SMM Kalan, M Soltanolkotabi, SA Avestimehr
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
4292019
A unified coding framework for distributed computing with straggling servers
S Li, MA Maddah-Ali, AS Avestimehr
2016 IEEE Globecom Workshops (GC Wkshps), 1-6, 2016
2032016
Coded mapreduce
S Li, MA Maddah-Ali, AS Avestimehr
2015 53rd Annual Allerton Conference on Communication, Control, and …, 2015
1952015
Jinhyun So
C He, S Li
Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh …, 2020
1642020
Coding for distributed fog computing
S Li, MA Maddah-Ali, AS Avestimehr
IEEE Communications Magazine 55 (4), 34-40, 2017
1612017
Polyshard: Coded sharding achieves linearly scaling efficiency and security simultaneously
S Li, M Yu, CS Yang, AS Avestimehr, S Kannan, P Viswanath
IEEE Transactions on Information Forensics and Security 16, 249-261, 2020
1492020
Lightsecagg: a lightweight and versatile design for secure aggregation in federated learning
J So, C He, CS Yang, S Li, Q Yu, R E Ali, B Guler, S Avestimehr
Proceedings of Machine Learning and Systems 4, 694-720, 2022
1402022
A scalable framework for wireless distributed computing
S Li, Q Yu, MA Maddah-Ali, AS Avestimehr
IEEE/ACM Transactions on Networking 25 (5), 2643-2654, 2017
1382017
Pipe-SGD: A decentralized pipelined SGD framework for distributed deep net training
Y Li, M Yu, S Li, S Avestimehr, NS Kim, A Schwing
Advances in Neural Information Processing Systems 31, 2018
1252018
Near-optimal straggler mitigation for distributed gradient methods
S Li, SMM Kalan, AS Avestimehr, M Soltanolkotabi
2018 IEEE International Parallel and Distributed Processing Symposium …, 2018
1142018
Coded merkle tree: Solving data availability attacks in blockchains
M Yu, S Sahraei, S Li, S Avestimehr, S Kannan, P Viswanath
International Conference on Financial Cryptography and Data Security, 114-134, 2020
942020
Gradiveq: Vector quantization for bandwidth-efficient gradient aggregation in distributed cnn training
M Yu, Z Lin, K Narra, S Li, Y Li, NS Kim, A Schwing, M Annavaram, ...
Advances in Neural Information Processing Systems 31, 2018
832018
Coded computing: Mitigating fundamental bottlenecks in large-scale distributed computing and machine learning
S Li, S Avestimehr
Foundations and Trends® in Communications and Information Theory 17 (1), 1-148, 2020
812020
Coded terasort
S Li, S Supittayapornpong, MA Maddah-Ali, S Avestimehr
2017 IEEE International Parallel and Distributed Processing Symposium …, 2017
692017
How to optimally allocate resources for coded distributed computing?
Q Yu, S Li, MA Maddah-Ali, AS Avestimehr
2017 IEEE International Conference on Communications (ICC), 1-7, 2017
632017
Coded distributed computing: Straggling servers and multistage dataflows
S Li, MA Maddah-Ali, AS Avestimehr
2016 54th Annual Allerton Conference on Communication, Control, and …, 2016
562016
Polynomially coded regression: Optimal straggler mitigation via data encoding
S Li, SMM Kalan, Q Yu, M Soltanolkotabi, AS Avestimehr
arXiv preprint arXiv:1805.09934, 2018
552018
SwiftAgg+: Achieving asymptotically optimal communication loads in secure aggregation for federated learning
T Jahani-Nezhad, MA Maddah-Ali, S Li, G Caire
IEEE Journal on Selected Areas in Communications 41 (4), 977-989, 2023
402023
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20