Seguir
Marcos Vinicius Treviso
Marcos Vinicius Treviso
Instituto Superior Tecnico, Instituto de Telecomunicações
E-mail confirmado em tecnico.ulisboa.pt - Página inicial
Título
Citado por
Citado por
Ano
Portuguese word embeddings: Evaluating on word analogies and natural language tasks
N Hartmann, E Fonseca, C Shulby, M Treviso, J Rodrigues, S Aluisio
arXiv preprint arXiv:1708.06025, 2017
3302017
OpenKiwi: An open source framework for quality estimation
F Kepler, J Trénous, M Treviso, M Vera, AFT Martins
arXiv preprint arXiv:1902.08646, 2019
1492019
CometKiwi: IST-unbabel 2022 submission for the quality estimation shared task
R Rei, M Treviso, NM Guerreiro, C Zerva, AC Farinha, C Maroti, ...
arXiv preprint arXiv:2209.06243, 2022
1242022
Efficient methods for natural language processing: A survey
M Treviso, JU Lee, T Ji, B Aken, Q Cao, MR Ciosici, M Hassid, K Heafield, ...
Transactions of the Association for Computational Linguistics 11, 826-860, 2023
992023
Unbabel's Participation in the WMT19 Translation Quality Estimation Shared Task
F Kepler, J Trénous, M Treviso, M Vera, A Góis, MA Farajian, AV Lopes, ...
arXiv preprint arXiv:1907.10352, 2019
652019
The explanation game: Towards prediction explainability through sparse communication
MV Treviso, AFT Martins
arXiv preprint arXiv:2004.13876, 2020
442020
Sparse and continuous attention mechanisms
A Martins, A Farinhas, M Treviso, V Niculae, P Aguiar, M Figueiredo
Advances in Neural Information Processing Systems 33, 20989-21001, 2020
332020
Sentence Segmentation in Narrative Transcripts from Neuropsychological Tests using Recurrent Convolutional Neural Networks
MV Treviso, C Shulby, SM Aluísio
Proceedings of the 15th Conference of the European Chapter of the …, 2017
272017
Learning to scaffold: Optimizing model explanations for teaching
P Fernandes, M Treviso, D Pruthi, A Martins, G Neubig
Advances in Neural Information Processing Systems 35, 36108-36122, 2022
222022
Scaling up cometkiwi: Unbabel-ist 2023 submission for the quality estimation shared task
R Rei, NM Guerreiro, J Pombal, D van Stigt, M Treviso, L Coheur, ...
arXiv preprint arXiv:2309.11925, 2023
182023
Predicting attention sparsity in transformers
M Treviso, A Góis, P Fernandes, E Fonseca, AFT Martins
arXiv preprint arXiv:2109.12188, 2021
182021
IST-unbabel 2021 submission for the explainable quality estimation shared task
M Treviso, NM Guerreiro, R Rei, AFT Martins
Proceedings of the 2nd Workshop on Evaluation and Comparison of NLP Systems …, 2021
172021
Evaluating word embeddings for sentence boundary detection in speech transcripts
MV Treviso, CD Shulby, SM Aluisio
arXiv preprint arXiv:1708.04704, 2017
172017
The inside story: Towards better understanding of machine translation neural evaluation metrics
R Rei, NM Guerreiro, M Treviso, L Coheur, A Lavie, AFT Martins
arXiv preprint arXiv:2305.11806, 2023
152023
CREST: A joint framework for rationalization and counterfactual text generation
M Treviso, A Ross, NM Guerreiro, AFT Martins
arXiv preprint arXiv:2305.17075, 2023
122023
PELESent: Cross-domain polarity classification using distant supervision
EA Corrêa, VQ Marinho, LB dos Santos, TFC Bertaglia, MV Treviso, ...
2017 Brazilian conference on intelligent systems (BRACIS), 49-54, 2017
112017
Detecting mild cognitive impairment in narratives in Brazilian Portuguese: first steps towards a fully automated system
MV Treviso, LB Santos, C Shulby, LC Hübner, LL Mansur, SM Aluísio
Letras de Hoje 53 (1), 48-58, 2018
82018
Sparse continuous distributions and Fenchel-Young losses
AFT Martins, M Treviso, A Farinhas, PMQ Aguiar, MAT Figueiredo, ...
Journal of Machine Learning Research 23 (257), 1-74, 2022
72022
Evaluating sentence segmentation in different datasets of neuropsychological language tests in brazilian portuguese
E Casanova, MV Treviso, LC Hübner, SM Aluísio
Proceedings, 2020
42020
Sentence segmentation and disfluency detection in narrative transcripts from neuropsychological tests
MV Treviso, SM Aluísio
Computational Processing of the Portuguese Language: 13th International …, 2018
32018
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20