Adversarial Robustness Toolbox v1. 0.0 MI Nicolae, M Sinn, MN Tran, B Buesser, A Rawat, M Wistuba, ... arXiv preprint arXiv:1807.01069, 2018 | 649 | 2018 |
Learning time-series shapelets J Grabocka, N Schilling, M Wistuba, L Schmidt-Thieme Proceedings of the 20th ACM SIGKDD international conference on Knowledge …, 2014 | 594 | 2014 |
A survey on neural architecture search M Wistuba, A Rawat, T Pedapati arXiv preprint arXiv:1905.01392, 2019 | 379 | 2019 |
Scalable gaussian process-based transfer surrogates for hyperparameter optimization M Wistuba, N Schilling, L Schmidt-Thieme Machine Learning 107 (1), 43-78, 2018 | 145 | 2018 |
Learning hyperparameter optimization initializations M Wistuba, N Schilling, L Schmidt-Thieme 2015 IEEE international conference on data science and advanced analytics …, 2015 | 131 | 2015 |
A comprehensive survey on hardware-aware neural architecture search H Benmeziane, KE Maghraoui, H Ouarnoughi, S Niar, M Wistuba, ... arXiv preprint arXiv:2101.09336, 2021 | 103 | 2021 |
Ultra-fast shapelets for time series classification M Wistuba, J Grabocka, L Schmidt-Thieme arXiv preprint arXiv:1503.05018, 2015 | 102 | 2015 |
Fast classification of univariate and multivariate time series through shapelet discovery J Grabocka, M Wistuba, L Schmidt-Thieme Knowledge and information systems 49, 429-454, 2016 | 88 | 2016 |
Hyperparameter search space pruning–a new component for sequential model-based hyperparameter optimization M Wistuba, N Schilling, L Schmidt-Thieme Machine Learning and Knowledge Discovery in Databases: European Conference …, 2015 | 87 | 2015 |
Two-stage transfer surrogate model for automatic hyperparameter optimization M Wistuba, N Schilling, L Schmidt-Thieme Machine Learning and Knowledge Discovery in Databases: European Conference …, 2016 | 84 | 2016 |
Personalized deep learning for tag recommendation HTH Nguyen, M Wistuba, J Grabocka, LR Drumond, L Schmidt-Thieme Advances in Knowledge Discovery and Data Mining: 21st Pacific-Asia …, 2017 | 81 | 2017 |
Few-shot bayesian optimization with deep kernel surrogates M Wistuba, J Grabocka arXiv preprint arXiv:2101.07667, 2021 | 79 | 2021 |
Deep learning architecture search by neuro-cell-based evolution with function-preserving mutations M Wistuba Machine Learning and Knowledge Discovery in Databases: European Conference …, 2019 | 68 | 2019 |
Sequential model-free hyperparameter tuning M Wistuba, N Schilling, L Schmidt-Thieme 2015 IEEE international conference on data mining, 1033-1038, 2015 | 56 | 2015 |
Learning DTW-shapelets for time-series classification M Shah, J Grabocka, N Schilling, M Wistuba, L Schmidt-Thieme Proceedings of the 3rd IKDD Conference on Data Science, 2016, 1-8, 2016 | 55 | 2016 |
Hardware-Aware Neural Architecture Search: Survey and Taxonomy. H Benmeziane, K El Maghraoui, H Ouarnoughi, S Niar, M Wistuba, ... IJCAI, 4322-4329, 2021 | 49 | 2021 |
Optimal exploitation of clustering and history information in multi-armed bandit D Bouneffouf, S Parthasarathy, H Samulowitz, M Wistub arXiv preprint arXiv:1906.03979, 2019 | 48 | 2019 |
Hyperparameter optimization with factorized multilayer perceptrons N Schilling, M Wistuba, L Drumond, L Schmidt-Thieme Machine Learning and Knowledge Discovery in Databases: European Conference …, 2015 | 48 | 2015 |
Practical Deep Learning Architecture Optimization M Wistuba 2018 IEEE 5th International Conference on Data Science and Advanced …, 2018 | 46* | 2018 |
Memory efficient continual learning with transformers B Ermis, G Zappella, M Wistuba, A Rawal, C Archambeau Advances in Neural Information Processing Systems 35, 10629-10642, 2022 | 45 | 2022 |