Seguir
Hongkai Zheng
Hongkai Zheng
E-mail confirmado em caltech.edu
Título
Citado por
Citado por
Ano
Physics-informed neural operator for learning partial differential equations
Z Li, H Zheng, N Kovachki, D Jin, H Chen, B Liu, K Azizzadenesheli, ...
ACM/JMS Journal of Data Science 1 (3), 1-27, 2024
4322024
Fast sampling of diffusion models via operator learning
H Zheng, W Nie, A Vahdat, K Azizzadenesheli, A Anandkumar
International conference on machine learning, 42390-42402, 2023
1102023
Fast training of diffusion models with masked transformers
H Zheng, W Nie, A Vahdat, A Anandkumar
arXiv preprint arXiv:2306.09305, 2023
422023
Implicit competitive regularization in GANs
F Schäfer, H Zheng, A Anandkumar
arXiv preprint arXiv:1910.05852, 2019
352019
Langevin monte carlo for contextual bandits
P Xu, H Zheng, EV Mazumdar, K Azizzadenesheli, A Anandkumar
International Conference on Machine Learning, 24830-24850, 2022
342022
Physics-informed neural operator for learning partial differential equations. arXiv 2021
Z Li, H Zheng, N Kovachki, D Jin, H Chen, B Liu, K Azizzadenesheli, ...
arXiv preprint arXiv:2111.03794, 0
7
Anima Anandkumar, Physics-informed neural operator for learning partial differential equations
Z Li, H Zheng, N Kovachki, D Jin, H Chen, B Liu, K Azizzadenesheli
arXiv preprint arXiv:2111.03794, 2021
52021
Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
H Zheng, W Chu, A Wang, N Kovachki, R Baptista, Y Yue
arXiv preprint arXiv:2409.20175, 2024
2024
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–8