Seguir
Giulia Denevi
Título
Citado por
Citado por
Ano
Learning-to-learn stochastic gradient descent with biased regularization
G Denevi, C Ciliberto, R Grazzi, M Pontil
International Conference on Machine Learning, 1566-1575, 2019
1322019
Learning to learn around a common mean
G Denevi, C Ciliberto, D Stamos, M Pontil
Advances in neural information processing systems 31, 2018
1022018
Online-within-online meta-learning
G Denevi, D Stamos, C Ciliberto, M Pontil
Advances in Neural Information Processing Systems 32, 2019
732019
Incremental learning-to-learn with statistical guarantees
G Denevi, C Ciliberto, D Stamos, M Pontil
arXiv preprint arXiv:1803.08089, 2018
552018
The advantage of conditional meta-learning for biased regularization and fine tuning
G Denevi, M Pontil, C Ciliberto
Advances in Neural Information Processing Systems 33, 964-974, 2020
462020
Conditional meta-learning of linear representations
G Denevi, M Pontil, C Ciliberto
Advances in Neural Information Processing Systems 35, 253-266, 2022
102022
Iterative algorithms for a non-linear inverse problem in atmospheric lidar
G Denevi, S Garbarino, A Sorrentino
Inverse Problems 33 (8), 085010, 2017
52017
Online Parameter-Free Learning of Multiple Low Variance Tasks
G Denevi, M Pontil, D Stamos
Conference on Uncertainty in Artificial Intelligence, 889-898, 2020
12020
Efficient Lifelong Learning Algorithms: Regret Bounds and Statistical Guarantees
G Denevi
Università degli Studi di Genova & Istituto Italiano di Tecnologia, 2019
2019
Berhu Penalty for Matrix and Tensor Estimation
G Denevi, M Donini, M Pontil
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–10