Randomized algorithms for rounding in the tensor-train format H Al Daas, G Ballard, P Cazeaux, E Hallman, A Międlar, M Pasha, ...
SIAM Journal on Scientific Computing 45 (1), A74-A95, 2023
34 2023 Modulus-based iterative methods for constrained ℓp–ℓq minimization A Buccini, M Pasha, L Reichel
Inverse Problems 36 (8), 084001, 2020
32 2020 Generalized singular value decomposition with iterated Tikhonov regularization A Buccini, M Pasha, L Reichel
Journal of Computational and Applied Mathematics 373, 112276, 2020
29 2020 Optimal transport for parameter identification of chaotic dynamics via invariant measures Y Yang, L Nurbekyan, E Negrini, R Martin, M Pasha
SIAM Journal on Applied Dynamical Systems 22 (1), 269-310, 2023
17 2023 A computational framework for edge-preserving regularization in dynamic inverse problems M Pasha, AK Saibaba, S Gazzola, MI Español, E de Sturler
Electronic Transactions on Numerical Analysis 58 (486), 486-516, 2023
16 * 2023 Linearized Krylov subspace Bregman iteration with nonnegativity constraint A Buccini, M Pasha, L Reichel
Numerical Algorithms 87, 1177-1200, 2021
16 2021 Efficient learning methods for large-scale optimal inversion design J Chung, M Chung, S Gazzola, M Pasha
arXiv preprint arXiv:2110.02720, 2021
11 2021 Bayesian spatiotemporal modeling for inverse problems S Lan, S Li, M Pasha
Statistics and Computing 33 (4), 89, 2023
6 2023 The image deblurring problem: Matrices, wavelets, and multilevel methods D Austin, MI Español, M Pasha
Notices of the American Mathematical Society 69 (8), 1284-1295, 2022
6 2022 TRIPs-Py: Techniques for Regularization of Inverse Problems in Python M Pasha, S Gazzola, C Sanderford, U Ugwu
https://arxiv.org/pdf/2402.17603.pdf, 2024
5 2024 Spatiotemporal Besov priors for Bayesian inverse problems S Lan, M Pasha, S Li, W Shen
arXiv preprint arXiv:2306.16378, 2023
5 2023 A Krylov subspace type method for Electrical Impedance Tomography M Pasha, S Kupis, S Ahmad, T Khan
ESAIM: Mathematical Modelling and Numerical Analysis 55 (6), 2827-2847, 2021
5 2021 Variable projection methods for separable nonlinear inverse problems with general-form Tikhonov regularization MI Español, M Pasha
Inverse Problems 39 (8), 084002, 2023
4 2023 Krylov subspace type methods for the computation of non-negative or sparse solutions of ill-posed problems M Pasha
Kent State University, 2020
3 2020 An Variable Projection Method for Large-Scale Separable Nonlinear Inverse Problems M Espanol, M Pasha
arXiv preprint arXiv:2105.14155, 2021
2 2021 Tensor Completion with BMD factor nuclear norm minimization F Tian, M Pasha, M Kilmer, E Miller, A Patra
http://arxiv.org/abs/2402.13068, 2024
1 2024 Recycling MMGKS for large-scale dynamic and streaming data M Pasha, E de Sturler, M Kilmer
https://arxiv.org/abs/2309.15759, 2023
1 2023 Sparse representation learning derives biological features with explicit gene weights from the Allen Mouse Brain Atlas M Abbasi, CR Sanderford, N Raghu, M Pasha, BB Bartelle
Plos one 18 (3), e0282171, 2023
1 2023 Efficient learning methods for large-scale optimal inversion design M Pasha, J Chung, M Chung, S Gazzola
2022 virtual joint mathematics meetings (JMM 2022), 2022
1 2022 Krylov Subspace Based FISTA‐Type Methods for Linear Discrete Ill‐Posed Problems A Buccini, F Chen, M Pasha, L Reichel
Numerical Linear Algebra with Applications 32 (1), e2610, 2025
2025