Seguir
Zhen Fang
Título
Citado por
Citado por
Ano
Open set domain adaptation: Theoretical bound and algorithm
Z Fang, J Lu, F Liu, J Xuan, G Zhang
IEEE Transactions on Neural Networks and Learning Systems, 2020
1962020
Federated Class-Incremental Learning
J Dong, L Wang, Z Fang, G Sun, S Xu, X Wang, Q Zhu
CVPR2022, 2022
1662022
Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation
J Dong, Y Cong, G Sun, Z Fang, Z Ding
IEEE Transactions on Pattern Analysis and Machine Intelligence 46 (3), 1664-1681, 2021
1512021
Is Out-of-Distribution Detection Learnable?
Z Fang, Y Li, J Lu, J Dong, B Han, F Liu
NeurIPS 2022 Outstanding Paper Award, 2022
1252022
Bridging the theoretical bound and deep algorithms for open set domain adaptation
L Zhong, Z Fang, F Liu, B Yuan, G Zhang, J Lu
IEEE transactions on neural networks and learning systems 34 (8), 3859-3873, 2021
1012021
Learning from a complementary-label source domain: theory and algorithms
Y Zhang, F Liu, Z Fang, B Yuan, G Zhang, J Lu
IEEE Transactions on Neural Networks and Learning Systems 33 (12), 7667-7681, 2021
912021
Confident Anchor-Induced Multi-Source Free Domain Adaptation
J Dong, Z Fang, A Liu, G Sun, T Liu
NeurIPS 2021, https://proceedings.neurips.cc/paper/202, 2021
912021
Semi-supervised Heterogeneous Domain Adaptation: Theory and Algorithms
Z Fang, J Lu, F Liu, G Zhang
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022
692022
Learning bounds for open-set learning
Z Fang, J Lu, A Liu, F Liu, G Zhang
International conference on machine learning, 3122-3132, 2021
612021
How does the Combined Risk Affect the Performance of Unsupervised Domain Adaptation Approaches?
L Zhong, Z Fang, F Liu, J Lu, B Yuan, G Zhang
Accepted By AAAI 2021, 2020
552020
Clarinet: A one-step approach towards budget-friendly unsupervised domain adaptation
Y Zhang, F Liu, Z Fang, B Yuan, G Zhang, J Lu
accepted by IJCAI 2020., 2020
402020
Learning to augment distributions for out-of-distribution detection
Q Wang, Z Fang, Y Zhang, F Liu, Y Li, B Han
NeurIPS 2023, 2023
292023
Negative Label Guided OOD Detection with Pretrained Vision-Language Models
X Jiang, F Liu, Z Fang, H Chen, T Liu, F Zheng, B Han
The Twelfth International Conference on Learning Representations (ICLR 2024), 2024
232024
Moderately Distributional Exploration for Domain Generalization
R Dai, Y Zhang, Z Fang, B Han, X Tian
International Conference on Machine Learning (ICML 2023), 2023
172023
Out-of-Distribution Detection with Negative Prompts
J Nie, Y Zhang, Z Fang, T Liu, B Han, X Tian
The Twelfth International Conference on Learning Representations (ICLR 2024), 2024
162024
Detecting Out-of-distribution Data through In-distribution Class Prior
X Jiang, F Liu, Z Fang, H Chen, T Liu, F Zheng, B Han
International Conference on Machine Learning (ICML 2023), 2023
162023
Source-free unsupervised domain adaptation: Current research and future directions
N Zhang, J Lu, K Li, Z Fang, G Zhang
Neurocomputing 564, 126921, 2024
152024
Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources
H Zheng, Q Wang, Z Fang, X Xia, F Liu, T Liu, B Han
NeurIPS 2023, 2023
152023
Unsupervised domain adaptation with sphere retracting transformation
Z Fang, J Lu, F Liu, G Zhang
2019 International Joint Conference on Neural Networks (IJCNN), 1-8, 2019
142019
How Does Wild Data Provably Help OOD Detection?
X Du, Z Fang, I Diakonikolas, Y Li
The Twelfth International Conference on Learning Representations, 2024
13*2024
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20