Scalable inference in SDEs by direct matching of the Fokker–Planck–Kolmogorov equation A Solin, E Tamir, P Verma Advances in Neural Information Processing Systems 34, 417-429, 2021 | 21 | 2021 |
Transport with support: Data-conditional diffusion bridges E Tamir, M Trapp, A Solin arXiv preprint arXiv:2301.13636, 2023 | 12 | 2023 |
Function-space parameterization of neural networks for sequential learning A Scannell, R Mereu, P Chang, E Tamir, J Pajarinen, A Solin arXiv preprint arXiv:2403.10929, 2024 | 6 | 2024 |
Sparse function-space representation of neural networks A Scannell, R Mereu, P Chang, E Tamir, J Pajarinen, A Solin arXiv preprint arXiv:2309.02195, 2023 | 4 | 2023 |
Learning to Approximate Particle Smoothing Trajectories via Diffusion Generative Models E Tamir, A Solin 2024 27th International Conference on Information Fusion (FUSION), 1-8, 2024 | | 2024 |
Conditional Flow Matching for Time Series Modelling E Tamir, N Laabid, M Heinonen, V Garg, A Solin ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative …, 2024 | | 2024 |
The Beurling Transform and Calculus of Variations through the Burkholder Functional E Tamir Master's thesis, University of Helsinki, 2017 | | 2017 |
Data-Conditional Diffusion Bridges E Tamir, M Trapp, A Solin NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 0 | | |
NeuralNetworks as Sparse Gaussian Processes for SequentialLearning A Scannell, R Mereu, P Chang, E Tamir, J Pajarinen, A Solin | | |