The communication-hiding conjugate gradient method with deep pipelines J Cornelis, S Cools, W Vanroose
arXiv preprint arXiv:1801.04728, 2018
36 2018 Numerically stable recurrence relations for the communication hiding pipelined conjugate gradient method S Cools, J Cornelis, W Vanroose
IEEE Transactions on Parallel and Distributed Systems 30 (11), 2507-2522, 2019
29 2019 Improving strong scaling of the conjugate gradient method for solving large linear systems using global reduction pipelining S Cools, J Cornelis, P Ghysels, W Vanroose
arXiv preprint arXiv:1905.06850, 2019
11 2019 Projected Newton method for noise constrained Tikhonov regularization J Cornelis, N Schenkels, W Vanroose
Inverse Problems 36 (5), 055002, 2020
6 2020 Projected Newton method for noise constrained ℓ p regularization J Cornelis, W Vanroose
Inverse Problems 36 (12), 125004, 2020
4 2020 Krylov subspace methods as key building blocks for numerical linear algebra and optimization J Cornelis
University of Antwerp, 2022
2 2022 Convergence analysis of a regularized inexact interior-point method for linear programming problems J Cornelis, W Vanroose
arXiv preprint arXiv:2105.01333, 2021
2 2021 Sequential Projected Newton method for regularization of nonlinear least squares problems J Cornelis, W Vanroose
Journal of Physics Communications 5 (9), 095009, 2021
1 2021 Krylov Subspace Methods as Key Building Blocks for Numerical Linear Algebra and Optimization: Thesis J Cornelis
2022 Krylov-Simplex method that minimizes the residual in -norm or -norm W Vanroose, J Cornelis
arXiv preprint arXiv:2101.11416, 2021
2021 Numerical Analysis of the Maximal Attainable Accuracy in Communication-hiding Pipelined Conjugate Gradients S Cools, J Cornelis, E Agullo, E Fatih-Yetkin, L Giraud, W Vanroose
CSE19-SIAM Conference on Computational Science and Engineering, 2019
2019 Constructie, numerieke eigenschappen en parallelle performantie van communicatie reducerende pipelined Krylov deelruimte methoden J Cornelis
Universiteit Antwerpen, 2017
2017 Projected Newton method for the regularization of ill-posed linear inverse problems J Cornelis, N Schenkels, W Vanroose
Applied Mathematics 2, 2.5, 0
KRYLOV-SIMPLEX METHOD THAT MINIMIZES THE RESIDUAL WIM VANROOSE, J CORNELIS
Hiding Global Reduction Latency in Pipelined Krylov Methods S Cools, J Cornelis, W Vanroose, P Ghysels, EF Yetkin, E Agullo, ...