Seguir
Vikash K. Mansinghka
Vikash K. Mansinghka
MIT, Probabilistic Computing Project
E-mail confirmado em mit.edu - Página inicial
Título
Citado por
Citado por
Ano
Church: a language for generative models
N Goodman, V Mansinghka, DM Roy, K Bonawitz, JB Tenenbaum
arXiv preprint arXiv:1206.3255, 2012
9952012
A new approach to probabilistic programming inference
F Wood, JW Meent, V Mansinghka
Artificial intelligence and statistics, 1024-1032, 2014
4052014
A short introduction to probabilistic soft logic
A Kimmig, S Bach, M Broecheler, B Huang, L Getoor
NIPS Workshop on probabilistic programming: Foundations and applications 1, 3, 2012
3242012
Picture: A probabilistic programming language for scene perception
TD Kulkarni, P Kohli, JB Tenenbaum, V Mansinghka
Proceedings of the ieee conference on computer vision and pattern …, 2015
2492015
Venture: a higher-order probabilistic programming platform with programmable inference
V Mansinghka, D Selsam, Y Perov
arXiv preprint arXiv:1404.0099, 2014
2412014
Reconciling intuitive physics and Newtonian mechanics for colliding objects.
AN Sanborn, VK Mansinghka, TL Griffiths
Psychological review 120 (2), 411, 2013
2372013
Gen: A general-purpose probabilistic programming system with programmable inference
MF Cusumano-Towner, FA Saad, A Lew, VK and Mansinghka
Technical Report MIT-CSAIL-TR-2018-020, Computer Science and Artificial …, 2019
2252019
Approximate bayesian image interpretation using generative probabilistic graphics programs
VK Mansinghka, TD Kulkarni, YN Perov, J Tenenbaum
Advances in neural information processing systems 26, 2013
1412013
Intuitive theories of mind: A rational approach to false belief
ND Goodman, CL Baker, EB Bonawitz, VK Mansinghka, A Gopnik, ...
Proceedings of the twenty-eighth annual conference of the cognitive science …, 2006
1342006
Online bayesian goal inference for boundedly rational planning agents
T Zhi-Xuan, J Mann, T Silver, J Tenenbaum, V Mansinghka
Advances in neural information processing systems 33, 19238-19250, 2020
1082020
Structured priors for structure learning
V Mansinghka, C Kemp, T Griffiths, J Tenenbaum
arXiv preprint arXiv:1206.6852, 2012
1032012
Learning annotated hierarchies from relational data
DM Roy, C Kemp, V Mansinghka, J Tenenbaum
Advances in neural information processing systems 19, 2006
792006
From word models to world models: Translating from natural language to the probabilistic language of thought
L Wong, G Grand, AK Lew, ND Goodman, VK Mansinghka, J Andreas, ...
arXiv preprint arXiv:2306.12672, 2023
782023
Natively probabilistic computation
VK Mansinghka
Massachusetts Institute of Technology, Department of Brain and Cognitive …, 2009
742009
Bayesian synthesis of probabilistic programs for automatic data modeling
FA Saad, MF Cusumano-Towner, U Schaechtle, MC Rinard, ...
Proceedings of the ACM on Programming Languages 3 (POPL), 1-32, 2019
712019
A probabilistic model of cross-categorization
P Shafto, C Kemp, V Mansinghka, JB Tenenbaum
Cognition 120 (1), 1-25, 2011
672011
From machine learning to robotics: Challenges and opportunities for embodied intelligence
N Roy, I Posner, T Barfoot, P Beaudoin, Y Bengio, J Bohg, O Brock, ...
arXiv preprint arXiv:2110.15245, 2021
582021
Probabilistic programming with programmable inference
VK Mansinghka, U Schaechtle, S Handa, A Radul, Y Chen, M and Rinard
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language …, 2018
572018
3DP3: 3D scene perception via probabilistic programming
N Gothoskar, M Cusumano-Towner, B Zinberg, M Ghavamizadeh, ...
Advances in Neural Information Processing Systems 34, 9600-9612, 2021
522021
Trace types and denotational semantics for sound programmable inference in probabilistic languages
AK Lew, MF Cusumano-Towner, B Sherman, M Carbin, VK Mansinghka
Proceedings of the ACM on Programming Languages 4 (POPL), 1-32, 2019
502019
O sistema não pode executar a operação agora. Tente novamente mais tarde.
Artigos 1–20