Artigos com autorizações de acesso público - Nenad TomasevSaiba mais
1 artigo não disponível publicamente
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
S Azizi, L Culp, J Freyberg, B Mustafa, S Baur, S Kornblith, T Chen, ...
Nature Biomedical Engineering 7 (6), 756-779, 2023
Autorizações: Cancer Research UK
15 artigos disponíveis publicamente
Clinically Applicable Deep Learning for Diagnosis and Referral in Retinal Disease
J Defauw, J Ledsam, Romera-Paredes B., N S., T Nenad, B S., A H., ...
Nature Medicine, 2018
Autorizações: National Institute for Health Research, UK, Wellcome Trust
A clinically applicable approach to continuous prediction of future acute kidney injury
Nature 572 (7767), 116-119, 2019
Autorizações: US Department of Veterans Affairs, National Institute for Health Research, UK
AI for social good: unlocking the opportunity for positive impact
N Tomašev, J Cornebise, F Hutter, S Mohamed, A Picciariello, B Connelly, ...
Nature Communications 11 (1), 2468, 2020
Autorizações: UK Engineering and Physical Sciences Research Council, European Commission …
Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol
V Sounderajah, H Ashrafian, RM Golub, S Shetty, J De Fauw, L Hooft, ...
BMJ open 11 (6), e047709, 2021
Autorizações: Cancer Research UK, UK Medical Research Council, National Institute for …
Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records
N Tomašev, N Harris, S Baur, A Mottram, X Glorot, JW Rae, M Zielinski, ...
Nature Protocols 16 (6), 2765-2787, 2021
Autorizações: National Institute for Health Research, UK
Automated analysis of retinal imaging using machine learning techniques for computer vision
JC Jeffrey De Fauw, Pearse Keane1, Nenad Tomasev, Daniel Visentin, George ...
F1000Research, 2016
Autorizações: National Institute for Health Research, UK
Hubness-aware classification, instance selection and feature construction: Survey and extensions to time-series
N Tomašev, K Buza, K Marussy, PB Kis
Feature selection for data and pattern recognition, 231-262, 2015
Autorizações: Hungarian Scientific Research Fund
Hubness-aware kNN classification of high-dimensional data in presence of label noise
N Tomašev, K Buza
Neurocomputing 160, 157-172, 2015
Autorizações: Magyar Tudományos Akadémia, Hungarian Scientific Research Fund
A case for hubness removal in high–dimensional multimedia retrieval
D Schnitzer, A Flexer, N Tomašev
Advances in Information Retrieval: 36th European Conference on IR Research …, 2014
Autorizações: Austrian Science Fund
Choosing the Metric in High-Dimensional Spaces Based on Hub Analysis.
D Schnitzer, A Flexer, N Tomasev
ESANN, 2014
Autorizações: Austrian Science Fund
A participatory initiative to include LGBT+ voices in AI for mental health
A Kormilitzin, N Tomasev, KR McKee, DW Joyce
Nature medicine 29 (1), 10-11, 2023
Autorizações: National Institute for Health Research, UK
Correcting the hub occurrence prediction bias in many dimensions
N Tomašev, K Buza, D Mladenić
Computer Science and Information Systems 13 (1), 1-21, 2016
Autorizações: Magyar Tudományos Akadémia, Hungarian Scientific Research Fund
Developing Deep Learning Continuous Risk Models for Early Adverse Event Prediction in Electronic Health Records: an AKI Case Study
N Tomašev, X Glorot, JW Rae, M Zielinski, H Askham, A Saraiva, ...
Autorizações: US Department of Veterans Affairs, National Institute for Health Research, UK
Protocol for a Delphi consensus process for PARticipatory Queer AI Research in Mental Health (PARQAIR-MH)
DW Joyce, A Kormilitzin, J Hamer-Hunt, KR McKee, N Tomasev
medRxiv, 2023.08. 07.23293764, 2023
Autorizações: US National Institutes of Health, National Institute for Health Research, UK
learning techniques for computer vision [version 2; referees: 2
J De Fauw, P Keane, N Tomasev, D Visentin, G van den Driessche, ...
Autorizações: National Institute for Health Research, UK
As informações de publicação e financiamento são determinadas automaticamente por um programa de computador