Obserwuj
Peng Lu
Peng Lu
China Agricultural University
Brak zweryfikowanego adresu e-mail
Tytuł
Cytowane przez
Cytowane przez
Rok
Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting
Y Zhao, L Ye, P Pinson, Y Tang, P Lu
IEEE Transactions on Power Systems 33 (5), 5029-5040, 2018
1742018
Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges
P Lu, L Ye, Y Zhao, B Dai, M Pei, Y Tang
Applied Energy 301, 117446, 2021
1462021
Hierarchical model predictive control strategy based on dynamic active power dispatch for wind power cluster integration
L Ye, C Zhang, Y Tang, W Zhong, Y Zhao, P Lu, B Zhai, H Lan, Z Li
IEEE Transactions on power systems 34 (6), 4617-4629, 2019
1282019
A novel spatio-temporal wind power forecasting framework based on multi-output support vector machine and optimization strategy
P Lu, L Ye, W Zhong, Y Qu, B Zhai, Y Tang, Y Zhao
Journal of Cleaner Production 254, 119993, 2020
732020
A combined model for short-term wind power forecasting based on the analysis of numerical weather prediction data
B He, L Ye, M Pei, P Lu, B Dai, Z Li, K Wang
Energy Reports 8, 929-939, 2022
632022
Short-term wind power forecasting based on meteorological feature extraction and optimization strategy
P Lu, L Ye, M Pei, Y Zhao, B Dai, Z Li
Renewable Energy 184, 642-661, 2022
632022
A new hybrid prediction method of ultra-short-term wind power forecasting based on EEMD-PE and LSSVM optimized by the GSA
P Lu, L Ye, B Sun, C Zhang, Y Zhao, J Teng
Energies 11 (4), 697, 2018
622018
A spatiotemporal directed graph convolution network for ultra-short-term wind power prediction
Z Li, L Ye, Y Zhao, M Pei, P Lu, Y Li, B Dai
IEEE Transactions on Sustainable Energy 14 (1), 39-54, 2022
602022
An ensemble method for short-term wind power prediction considering error correction strategy
L Ye, B Dai, Z Li, M Pei, Y Zhao, P Lu
Applied Energy 322, 119475, 2022
572022
Combined approach for short-term wind power forecasting based on wave division and Seq2Seq model using deep learning
L Ye, B Dai, M Pei, P Lu, J Zhao, M Chen, B Wang
IEEE Transactions on Industry Applications 58 (2), 2586-2596, 2022
522022
Feature extraction of meteorological factors for wind power prediction based on variable weight combined method
P Lu, L Ye, Y Zhao, B Dai, M Pei, Z Li
Renewable Energy 179, 1925-1939, 2021
492021
Ultra-short-term combined prediction approach based on kernel function switch mechanism
P Lu, L Ye, Y Tang, Y Zhao, W Zhong, Y Qu, B Zhai
Renewable Energy 164, 842-866, 2021
422021
A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching
L Ye, Y Li, M Pei, Y Zhao, Z Li, P Lu
Applied Energy 327, 120131, 2022
362022
Study of assessment on capability of wind power accommodation in regional power grids
L Ye, C Zhang, H Xue, J Li, P Lu, Y Zhao
Renewable Energy 133, 647-662, 2019
362019
基于模型预测控制的风电集群多时间尺度有功功率优化调度策略研究
路朋, 叶林, 汤涌, 张慈杭, 仲悟之, 孙舶皓, 翟丙旭, 曲莹, 刘新元
中国电机工程学报 39 (22), 6572-6583, 2019
232019
含风电电力系统有功功率模型预测控制方法综述
叶林, 路朋, 赵永宁, 戴斌华, 汤涌
中国电机工程学报 41 (18), 6181-6198, 2021
212021
基于天气分型的短期光伏功率组合预测方法
叶林, 裴铭, 路朋, 赵金龙, 何博宇
电力系统自动化 45 (1), 44-54, 2021
212021
Combined Gaussian mixture model and cumulants for probabilistic power flow calculation of integrated wind power network
L Ye, Y Zhang, C Zhang, P Lu, Y Zhao, B He
Computers & Electrical Engineering 74, 117-129, 2019
212019
基于混合储能双层规划模型的风电波动平抑策略
马兰, 谢丽蓉, 叶林, 路朋, 王凯丰
电网技术 46 (3), 1016-1026, 2022
172022
Wind and photovoltaic power time series data aggregation method based on an ensemble clustering and Markov chain
J Jin, L Ye, J Li, Y Zhao, P Lu, W Wang, X Wang
CSEE Journal of Power and Energy Systems 8 (3), 757-768, 2021
172021
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20