Obserwuj
Ashley Diehl
Tytuł
Cytowane przez
Cytowane przez
Rok
Targeted adversarial discriminative domain adaptation
HM Chen, A Savakis, A Diehl, E Blasch, S Wei, G Chen
Journal of Applied Remote Sensing 15 (3), 038504-038504, 2021
132021
An end-to-end vechicle classification pipeline using vibrometry data
A Smith, O Mendoza-Schrock, S Kangas, M Dierking, A Shaw
SPIE Defense+ Security, 90790O-90790O-11, 2014
132014
Transfer learning for aided target recognition: comparing deep learning to other machine learning approaches
S Rivera, O Mendoza-Schrock, A Diehl
Automatic Target Recognition XXIX 10988, 200-209, 2019
42019
Remote vibrometry vehicle classification
A Smith, S Goley, K Vongsy, A Shaw, M Dierking
SPIE Defense+ Security, 94640S-94640S-13, 2015
22015
Securing Machine Learning: A Red vs Blue Approach
A Hildenbrandt, A Diehl
NAECON 2021-IEEE National Aerospace and Electronics Conference, 337-340, 2021
12021
Effects of fundamental frequency normalization on vibration-based vehicle classification
A Smith, S Goley, K Vongsy, A Shaw, M Dierking
SPIE Defense+ Security, 94741A-94741A-13, 2015
12015
Sparse Feature-Persistent Hierarchical Classification
A Diehl, J Ash
NAECON 2024-IEEE National Aerospace and Electronics Conference, 147-152, 2024
2024
Sub-signal detection from noisy complex signals using deep learning and mathematical morphology
J Wei, H Clouse, A Diehl
Deep Learning and Its Applications for Vehicle Networks, 273-292, 2023
2023
Exploring the Removal of Bit-Planes for Increased Adversarial Robustness (Preprint)
A Hildenbrandt, A Diehl, C Menart, R Canady, M Robertson, H Richards
2023
End-to-End Classification Process for the Exploitation of Vibrometry Data
AN Smith
Wright State University, 2014
2014
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–10