Adversarial attacks on deep models for financial transaction records I Fursov, M Morozov, N Kaploukhaya, E Kovtun, R Rivera-Castro, ... Proceedings of the 27th acm sigkdd conference on knowledge discovery & data …, 2021 | 42 | 2021 |
Forecasting of commercial sales with large scale Gaussian Processes R Rivera, E Burnaev 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 625-634, 2017 | 25 | 2017 |
Demand forecasting techniques for build-to-order lean manufacturing supply chains R Rivera-Castro, I Nazarov, Y Xiang, A Pletneev, I Maksimov, E Burnaev Advances in Neural Networks–ISNN 2019: 16th International Symposium on …, 2019 | 15 | 2019 |
Sequence embeddings help detect insurance fraud I Fursov, E Kovtun, R Rivera-Castro, A Zaytsev, R Khasyanov, M Spindler, ... IEEE Access 10, 32060-32074, 2022 | 14 | 2022 |
Towards forecast techniques for business analysts of large commercial data sets using matrix factorization methods R Rivera, I Nazarov, E Burnaev Journal of Physics: Conference Series 1117 (1), 012010, 2018 | 13 | 2018 |
Topological data analysis for portfolio management of cryptocurrencies R Rivera-Castro, P Pilyugina, E Burnaev 2019 International Conference on Data Mining Workshops (ICDMW), 238-243, 2019 | 10 | 2019 |
Addressing cold start in recommender systems with hierarchical graph neural networks I Maksimov, R Rivera-Castro, E Burnaev 2020 IEEE International Conference on Big Data (Big Data), 5128-5137, 2020 | 9 | 2020 |
Continuous-time convolutions model of event sequences V Zhuzhel, V Grabar, G Boeva, A Zabolotnyi, A Stepikin, V Zholobov, ... arXiv preprint arXiv:2302.06247, 2023 | 8 | 2023 |
Topological data analysis of time series data for B2B customer relationship management R Rivera-Castro, P Pilyugina, A Pletnev, I Maksimov, W Zhu, E Burnaev 35th IMP-conference in Paris, France, 2019 | 8 | 2019 |
Graph neural networks for model recommendation using time series data A Pletnev, R Rivera-Castro, E Burnaev 2020 19th IEEE International Conference on Machine Learning and Applications …, 2020 | 7 | 2020 |
Topology-based clusterwise regression for user segmentation and demand forecasting R Rivera-Castro, A Pletnev, P Pilyugina, G Diaz, I Nazarov, W Zhu, ... 2019 IEEE International Conference on Data Science and Advanced Analytics …, 2019 | 7 | 2019 |
Deepfolio: Convolutional neural networks for portfolios with limit order book data A Sangadiev, R Rivera-Castro, K Stepanov, A Poddubny, K Bubenchikov, ... arXiv preprint arXiv:2008.12152, 2020 | 6 | 2020 |
An industry case of large-scale demand forecasting of hierarchical components R Rivera-Castro, I Nazarov, Y Xiang, I Maksimov, A Pletnev, E Burnaev 2019 18th IEEE International Conference On Machine Learning And Applications …, 2019 | 6 | 2019 |
COHORTNEY: Non-parametric clustering of event sequences V Zhuzhel, R Rivera-Castro, N Kaploukhaya, L Mironova, A Zaytsev, ... arXiv preprint arXiv:2104.01440, 2021 | 4 | 2021 |
No two users are alike: Generating audiences with neural clustering for temporal point processes V Zhuzhel, V Grabar, N Kaploukhaya, R Rivera-Castro, L Mironova, ... Doklady Mathematics 108 (Suppl 2), S511-S528, 2023 | 2 | 2023 |
CAUSALYSIS: Causal Machine Learning for Real-Estate Investment Decisions R Rivera-Castro, E Burnaev 2021 IEEE 8th International Conference on Data Science and Advanced …, 2021 | 2 | 2021 |
COHORTNEY: Deep clustering for heterogeneous event sequences V Zhuzhel, R Rivera-Castro, N Kaploukhaya, L Mironova, A Zaytsev, ... arXiv: 2104.01440, 2021 | 2 | 2021 |
TOTOPO: Classifying univariate and multivariate time series with Topological Data Analysis P Pilyugina, R Rivera-Castro, E Burnaev arXiv preprint arXiv:2010.05056, 2020 | 1 | 2020 |
Topologically-based Variational Autoencoder for Time Series Classification R Rivera-Castro, S Moustafa, P Pilyugina, E Burnaev latinxinai. org, 2020 | 1 | 2020 |
COTIC: Embracing Non-uniformity in Event Sequence Data via Multilayer Continuous Convolution VA Zhuzhel, V Grabar, G Boeva, A Zabolotnyi, A Stepikin, V Zholobov, ... arXiv preprint arXiv:2302.06247, 2023 | | 2023 |