Artykuły udostępnione publicznie: - Dong LiWięcej informacji
Niedostępne w żadnym miejscu: 20
Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection
L Tian, B Xue, Z Wang, D Li, X Yao, Q Cao, Y Zhu, W Cao, T Cheng
Remote Sensing of Environment 257, 112350, 2021
Upoważnienia: National Natural Science Foundation of China
Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time
D Li, JM Chen, X Zhang, Y Yan, J Zhu, H Zheng, K Zhou, X Yao, Y Tian, ...
Remote Sensing of Environment 248, 111985, 2020
Upoważnienia: National Natural Science Foundation of China
Assessment of unified models for estimating leaf chlorophyll content across directional-hemispherical reflectance and bidirectional reflectance spectra
D Li, L Tian, Z Wan, M Jia, X Yao, Y Tian, Y Zhu, W Cao, T Cheng
Remote Sensing of Environment 231, 111240, 2019
Upoważnienia: National Natural Science Foundation of China
Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content
D Li, JM Chen, W Yu, H Zheng, X Yao, W Cao, D Wei, C Xiao, Y Zhu, ...
Remote Sensing of Environment 282, 113284, 2022
Upoważnienia: US National Science Foundation, US Department of Energy, National Natural …
A disease-specific spectral index tracks Magnaporthe oryzae infection in paddy rice from ground to space
L Tian, Z Wang, B Xue, D Li, H Zheng, X Yao, Y Zhu, W Cao, T Cheng
Remote Sensing of Environment 285, 113384, 2023
Upoważnienia: National Natural Science Foundation of China
Estimating leaf nitrogen content by coupling a nitrogen allocation model with canopy reflectance
D Li, JM Chen, Y Yan, H Zheng, X Yao, Y Zhu, W Cao, T Cheng
Remote Sensing of Environment 283, 113314, 2022
Upoważnienia: National Natural Science Foundation of China
Improved prediction of rice yield at field and county levels by synergistic use of SAR, optical and meteorological data
W Yu, G Yang, D Li, H Zheng, X Yao, Y Zhu, W Cao, L Qiu, T Cheng
Agricultural and Forest Meteorology 342, 109729, 2023
Upoważnienia: National Natural Science Foundation of China
Hyperspectral Remote Sensing of Leaf Nitrogen Concentration in Cereal Crops
T Cheng, Y Zhu, D Li, X Yao, K Zhou
Hyperspectral Indices and Image Classifications for Agriculture and …, 2018
Upoważnienia: National Natural Science Foundation of China
BRDF Effect on the Estimation of Canopy Chlorophyll Content in Paddy Rice from UAV-Based Hyperspectral Imagery
D Li, H Zheng, X Xu, N Lu, X Yao, J Jiang, X Wang, Y Tian, Y Zhu, W Cao, ...
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium …, 2018
Upoważnienia: National Natural Science Foundation of China
Laboratory shortwave infrared reflectance spectroscopy for estimating grain protein content in rice and wheat
Y Yan, X Zhang, D Li, H Zheng, X Yao, Y Zhu, W Cao, T Cheng
International Journal of Remote Sensing 42 (12), 4467-4492, 2021
Upoważnienia: National Natural Science Foundation of China
Next step in vegetation remote sensing: synergetic retrievals of canopy structural and leaf biochemical parameters
JM Chen, M Xu, R Wang, D Li, R Liu, W Ju, T Cheng
New Thinking in GIScience, 207-220, 2022
Upoważnienia: Natural Sciences and Engineering Research Council of Canada
Coupling continuous wavelet transform with machine learning to improve water status prediction in winter wheat
T Zhuang, Y Zhang, D Li, U Schmidhalter, ST Ata-UI-Karim, T Cheng, ...
Precision Agriculture 24 (6), 2171-2199, 2023
Upoważnienia: National Natural Science Foundation of China
Towards practical semi-empirical models for the estimation of leaf and canopy water contents from hyperspectral reflectance
D Li, W Yu, H Zheng, C Guo, X Yao, Y Zhu, W Cao, T Cheng
Computers and Electronics in Agriculture 214, 108309, 2023
Upoważnienia: National Natural Science Foundation of China
Integration of canopy water removal and spectral triangle index for improved estimations of leaf nitrogen and grain protein concentrations in winter wheat
Y Yan, D Li, Q Kuang, X Yao, Y Zhu, W Cao, T Cheng
IEEE Transactions on Geoscience and Remote Sensing 61, 1-18, 2023
Upoważnienia: National Natural Science Foundation of China
Wavelet-based PROSPECT inversion for retrieving leaf mass per area (LMA) and equivalent water thickness (EWT) from leaf reflectance
D Li, T Cheng, X Yao, Z Zhang, Y Tian, Y Zhu, W Cao
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2016
Upoważnienia: National Natural Science Foundation of China
Towards decomposing the effects of foliar nitrogen content and canopy structure on rice canopy spectral variability through multi-scale spectral analysis
T Cheng, D Li, H Zheng, X Yao, Y Tian, Y Zhu, W Cao
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2016
Upoważnienia: National Natural Science Foundation of China
A wavelet-based technique for extracting the red edge position from vegetation reflectance spectra
T Cheng, D Li, X Yao, Y Tian, Y Zhu, W Cao
2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS …, 2015
Upoważnienia: National Natural Science Foundation of China
Semi-empirical models for estimating canopy chlorophyll content: the importance of prior information
D Li, H Zheng, X Yao, Y Zhu, W Cao, T Cheng
Remote Sensing Letters 14 (10), 1109-1116, 2023
Upoważnienia: National Natural Science Foundation of China
Improved Estimation of Leaf Chlorophyll Content from Non-Noon Reflectance Spectra of Wheat Canopies by Avoiding the Effect of Soil Background
D Li, M Jia, J Zhu, X Yao, Y Tian, Y Zhu, W Cao, T Cheng
2018 7th International Conference on Agro-geoinformatics (Agro …, 2018
Upoważnienia: National Natural Science Foundation of China
Retrieval of LEAF pigment content using wavelet-based prospect inversion from leaf reflectance spectra
D Li, T Cheng, X Yao, Y Tian, Y Zhu, W Cao
2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in …, 2016
Upoważnienia: National Natural Science Foundation of China
Informacje na temat publikacji i finansowania automatycznie określa program komputerowy