Mitigating Gender Bias in Natural Language Processing: Literature Review T Sun*, A Gaut*, S Tang, Y Huang, M ElSherief, J Zhao, D Mirza, ... ACL 2019, Oral, 2019 | 742 | 2019 |
BOLD: Dataset and Metrics for Measuring Biases in Open-ended Language Generation J Dhamala*, T Sun*, V Kumar, S Krishna, Y Pruksachatkun, KW Chang, ... ACM FAccT 2021, 2021 | 379 | 2021 |
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation KD Dhole, V Gangal, S Gehrmann, A Gupta, Z Li, S Mahamood, ... NEJLT 2023, 2021 | 80 | 2021 |
They, Them, Theirs: Rewriting with Gender-Neutral English T Sun, K Webster, A Shah, WY Wang, M Johnson WeCNLP 2020, Best Paper Nomination, 2020 | 63 | 2020 |
Towards understanding gender bias in relation extraction A Gaut*, T Sun*, S Tang, Y Huang, J Qian, M ElSherief, J Zhao, D Mirza, ... ACL 2020, 2019 | 60 | 2019 |
Locality Alignment Improves Vision-Language Models I Covert, T Sun, J Zou, T Hashimoto ICLR 2025, 2024 | 3 | 2024 |