Obserwuj
Jianda Chen
Jianda Chen
Zweryfikowany adres z e.ntu.edu.sg
Tytuł
Cytowane przez
Cytowane przez
Rok
Transforming a 3-d lidar point cloud into a 2-d dense depth map through a parameter self-adaptive framework
L Chen, Y He, J Chen, Q Li, Q Zou
IEEE Transactions on Intelligent Transportation Systems 18 (1), 165-176, 2016
482016
Storage efficient and dynamic flexible runtime channel pruning via deep reinforcement learning
J Chen, S Chen, SJ Pan
Advances in neural information processing systems 33, 14747-14758, 2020
332020
A full density stereo matching system based on the combination of CNNs and slanted-planes
L Chen, L Fan, J Chen, D Cao, F Wang
IEEE Transactions on Systems, Man, and Cybernetics: Systems 50 (2), 397-408, 2017
282017
Multi-view feature combination for ancient paintings chronological classification
L Chen, J Chen, Q Zou, K Huang, Q Li
Journal on Computing and Cultural Heritage (JOCCH) 10 (2), 1-15, 2017
242017
Accelerate learning of deep hashing with gradient attention
LK Huang, J Chen, SJ Pan
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
232019
LMExplainer: a Knowledge-Enhanced Explainer for Language Models
Z Chen, J Chen, Y Chen, H Yu, AK Singh, M Sra
arXiv preprint arXiv:2303.16537, 2023
142023
Learning representations via a robust behavioral metric for deep reinforcement learning
J Chen, S Pan
Advances in Neural Information Processing Systems 35, 36654-36666, 2022
122022
Statistical analysis of energy-aware real-time automotive systems in EAST-ADL/Stateflow
EY Kang, J Chen, L Ke, S Chen
2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA …, 2016
122016
XplainLLM: A Knowledge-Augmented Dataset for Reliable Grounded Explanations in LLMs
Z Chen, J Chen, A Singh, M Sra
arXiv preprint arXiv:2311.08614, 2023
10*2023
Sequential generative exploration model for partially observable reinforcement learning
H Yin, J Chen, SJ Pan, S Tschiatschek
Proceedings of the aaai conference on artificial intelligence 35 (12), 10700 …, 2021
102021
A novel way to organize 3D LiDAR point cloud as 2D depth map height map and surface normal map
Y He, L Chen, J Chen, M Li
2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 1383 …, 2015
102015
Multi-task relative attributes prediction by incorporating local context and global style information features
Y He, L Chen, J Chen
Proceedings of BMVC 131, 1-12, 2016
92016
Learning generalizable representations for reinforcement learning via adaptive meta-learner of behavioral similarities
J Chen, SJ Pan
The Tenth International Conference on Learning Representations, 2022
72022
Hashing over predicted future frames for informed exploration of deep reinforcement learning
H Yin, J Chen, SJ Pan
arXiv preprint arXiv:1707.00524, 2017
72017
Position: Standard Benchmarks Fail--LLM Agents Present Overlooked Risks for Financial Applications
Z Chen, J Chen, J Chen, M Sra
arXiv preprint arXiv:2502.15865, 2025
2025
State Chrono Representation for Enhancing Generalization in Reinforcement Learning
J Chen, Z Chen, S Pan, T Zhang
Advances in Neural Information Processing Systems 37, 73309-73336, 2024
2024
Off-dynamics Conditional Diffusion Planners
WZT Ng, J Chen, T Zhang
IROS 2024, 2024
2024
Large Language Models Know What Makes Exemplary Contexts
Q Long, J Chen, W Wang, SJ Pan
arXiv preprint arXiv:2408.07505, 2024
2024
Improving the Generalization of Unseen Crowd Behaviors for Reinforcement Learning based Local Motion Planners
WZT Ng, J Chen, SJ Pan, T Zhang
2024 IEEE International Conference on Robotics and Automation (ICRA), 7412-7418, 2024
2024
LMExplainer: Grounding Knowledge and Explaining Language Models
Z Chen, J Chen, Y Chen, H Yu, AK Singh, M Sra
arXiv preprint arXiv:2303.16537, 2023
2023
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20