Obserwuj
Umberto Maria Tomasini
Tytuł
Cytowane przez
Cytowane przez
Rok
How deep neural networks learn compositional data: The random hierarchy model
F Cagnetta, L Petrini, UM Tomasini, A Favero, M Wyart
Physical Review X 14 (3), 031001, 2024
302024
Failure and success of the spectral bias prediction for Laplace Kernel Ridge Regression: the case of low-dimensional data
UM Tomasini, A Sclocchi, M Wyart
International Conference on Machine Learning, 21548-21583, 2022
16*2022
How deep convolutional neural networks lose spatial information with training
UM Tomasini, L Petrini, F Cagnetta, M Wyart
Machine Learning: Science and Technology 4 (4), 045026, 2023
92023
How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
UM Tomasini, M Wyart
International Conference on Machine Learning, 48369--48389, 2024
82024
Predictors and predictands of linear response in spatially extended systems
UM Tomasini, V Lucarini
The European Physical Journal Special Topics 230 (14), 2813-2832, 2021
82021
How data structures affect generalization in Kernel Methods and Deep Learning
UM Tomasini
EPFL, 2025
2025
Using Observables as Predictors through Response Theory: From Linear Systems to Nonlinear Climate Models
UM Tomasini
2020
Estensioni centrali e Anomalie in Meccanica Quantistica
UM Tomasini
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–8