Obserwuj
Philipp Scholl
Tytuł
Cytowane przez
Cytowane przez
Rok
Safe policy improvement approaches and their limitations
P Scholl, F Dietrich, C Otte, S Udluft
International Conference on Agents and Artificial Intelligence, 74-98, 2022
62022
Safe Policy Improvement Approaches on Discrete Markov Decision Processes
P Scholl, F Dietrich, C Otte, S Udluft
ICAART 2, 142-151, 2022
52022
The Uniqueness Problem of Physical Law Learning
P Scholl, A Bacho, H Boche, G Kutyniok
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and …, 2023
42023
Learning-based adaption of robotic friction models
P Scholl, M Iskandar, S Wolf, J Lee, A Bacho, A Dietrich, A Albu-Schäffer, ...
Robotics and Computer-Integrated Manufacturing 89, 102780, 2024
32024
Symbolic Recovery of Differential Equations: The Identifiability Problem
P Scholl, A Bacho, H Boche, G Kutyniok
https://arxiv.org/abs/2210.08342, 2022
3*2022
Evaluation of Safe Policy Improvement with Soft Baseline Bootstrapping
P Scholl
Technical University of Munich, 2021
32021
ParFam--(Neural Guided) Symbolic Regression via Continuous Global Optimization
P Scholl, K Bieker, H Hauger, G Kutyniok
The Thirteenth International Conference on Learning Representations, 2025
1*2025
Robust identifiability for symbolic recovery of differential equations
H Hauger, P Scholl, G Kutyniok
arXiv preprint arXiv:2410.09938, 2024
12024
Probabilistic neural operators for functional uncertainty quantification
C Bülte, P Scholl, G Kutyniok
arXiv preprint arXiv:2502.12902, 2025
2025
Compositional Construction of Barrier Functions for Switched Impulsive Systems
K Bieker, H Kussaba, P Scholl, J Jung, A Swikir, S Haddadin, G Kutyniok
2024 IEEE 63rd Conference on Decision and Control (CDC), 7085-7091, 2024
2024
Probabilistic predictions with Fourier neural operators
C Bülte, P Scholl, G Kutyniok
NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty, 2024
2024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–11