Obserwuj
Tao LIN
Tao LIN
Westlake University | EPFL
Zweryfikowany adres z westlake.edu.cn - Strona główna
Tytuł
Cytowane przez
Cytowane przez
Rok
Ensemble Distillation for Robust Model Fusion in Federated Learning
T Lin*, L Kong*, SU Stich, M Jaggi
NeurIPS 2020 - Advances in Neural Information Processing Systems, 2020, 2020
11862020
Don't Use Large Mini-Batches, Use Local SGD
T Lin, SU Stich, KK Patel, M Jaggi
ICLR 2020 - International Conference on Learning Representations, 2020
5082020
Fog orchestration for internet of things services
Z Wen, R Yang, P Garraghan, T Lin, J Xu, M Rovatsos
IEEE Internet Computing 21 (2), 16-24, 2017
4212017
Decentralized Deep Learning with Arbitrary Communication Compression
A Koloskova*, T Lin*, SU Stich, M Jaggi
ICLR 2020 - International Conference on Learning Representations, 2020
2692020
Dynamic Model Pruning with Feedback
T Lin, SU Stich, L Barba, D Dmitriev, M Jaggi
ICLR 2020 - International Conference on Learning Representations, 2020
2492020
Exploring interpretable LSTM neural networks over multi-variable data
T Guo, T Lin, N Antulov-Fantulin
ICML 2019 - International Conference on Machine Learning, 2494-2504, 2019
2332019
Hybrid Neural Networks for Learning the Trend in Time Series
T Lin*, T Guo*, K Aberer
IJCAI 2017 - Proceedings of the Twenty-Sixth International Joint Conference …, 2017
1912017
Training DNNs with Hybrid Block Floating Point
M Drumond, T Lin, M Jaggi, B Falsafi
NeurIPS 2018 - Advances in Neural Information Processing Systems, 2018, 2018
1342018
Masking as an Efficient Alternative to Finetuning for Pretrained Language Models
M Zhao*, T Lin*, M Jaggi, H Schütze
EMNLP 2020 - Empirical Methods in Natural Language Processing, 2020
1142020
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
T Lin, SP Karimireddy, SU Stich, M Jaggi
ICML 2021 - Proceedings of the 38th International Conference on Machine Learning, 2021
1102021
An Improved Analysis of Gradient Tracking for Decentralized Machine Learning
A Koloskova, T Lin, SU Stich
NeurIPS 2021 - Advances in Neural Information Processing Systems, 2021 34, 2021
1082021
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
C Liu, M Salzmann, T Lin, R Tomioka, S Süsstrunk
NeurIPS 2020 - Advances in Neural Information Processing Systems, 2020, 2020
1032020
Consensus Control for Decentralized Deep Learning
L Kong*, T Lin*, A Koloskova, M Jaggi, SU Stich
ICML 2021 - Proceedings of the 38th International Conference on Machine Learning, 2021
912021
Revisiting Weighted Aggregation in Federated Learning with Neural Networks
Z Li, T Lin, X Shang, C Wu
ICML 2023 - International Conference on Machine Learning, 2023
742023
RelaySum for Decentralized Deep Learning on Heterogeneous Data
T Vogels*, L He*, A Koloskova, T Lin, SP Karimireddy, SU Stich, M Jaggi
NeurIPS 2021 - Advances in Neural Information Processing Systems, 2021, 2021
692021
No Fear of Classifier Biases: Neural Collapse Inspired Federated Learning with Synthetic and Fixed Classifier
Z Li, X Shang, R He, T Lin, C Wu
ICCV 2023 - International Conference on Computer Vision, 2023
662023
An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function
H Li*, X Wang*, D Rukina, Q Huang, T Lin, V Sorrentino, H Zhang, ...
Cell systems 6 (1), 90-102. e4, 2018
592018
On Pitfalls of Test-Time Adaptation
H Zhao*, Y Liu*, A Alahi, T Lin
ICML 2023 - International Conference on Machine Learning, abridged in ICLR …, 2023
552023
Test-Time Robust Personalization for Federated Learning
L Jiang*, T Lin*
ICLR 2023 - International Conference on Learning Representations, 2023
542023
On the Diversity and Realism of Distilled Dataset: An Efficient Dataset Distillation Paradigm
P Sun, B Shi, D Yu, T Lin
CVPR 2024 - The IEEE / CVF Computer Vision and Pattern Recognition Conference, 2024
522024
Nie można teraz wykonać tej operacji. Spróbuj ponownie później.
Prace 1–20